The Promise of Circulating Tumor DNA (ctDNA) in the Management of Early-Stage Colon Cancer: A Critical Review.
Ontology highlight
ABSTRACT: The current standard treatment for patients with early-stage colon cancer consists of surgical resection, followed by adjuvant therapy in a select group of patients deemed at risk of cancer recurrence. The decision to administer adjuvant therapy, intended to eradicate the clinically inapparent minimal residual disease (MRD) to achieve a cure, is guided by clinicopathologic characteristics of the tumor. However, the risk stratification based on clinicopathologic characteristics is imprecise and results in under or overtreatment in a substantial number of patients. Emerging research indicates that the circulating tumor DNA (ctDNA), a fraction of cell-free DNA (cfDNA) in the bloodstream that originates from the neoplastic cells and carry tumor-specific genomic alterations, is a promising surrogate marker of MRD. Several recent studies suggest that ctDNA-guided risk stratification for adjuvant therapy outperforms existing clinicopathologic prognostic indicators. Preliminary data also indicate that, aside from being a prognostic indicator, ctDNA can inform on the efficacy of adjuvant therapy, which is the underlying scientific rationale for several ongoing clinical trials evaluating ctDNA-guided therapy escalation or de-escalation. Furthermore, serial monitoring of ctDNA after completion of definitive therapy can potentially detect cancer recurrence much earlier than conventional surveillance methods that may provide a critical window of opportunity for additional curative-intent therapeutic interventions. This article presents a critical overview of published studies that evaluated the clinical utility of ctDNA in the management of patients with early-stage colon cancer, and discusses the potential of ctDNA to transform the adjuvant therapy strategies.
SUBMITTER: Chakrabarti S
PROVIDER: S-EPMC7601010 | biostudies-literature | 2020 Sep
REPOSITORIES: biostudies-literature
ACCESS DATA