Project description:Therapies targeting interleukin-5 (IL-5) or its receptor (IL-5Rα) are used to treat patients with severe eosinophilic asthma. The therapeutic effect are considered being the suppression of eosinophil activation and elimination. However, the impact of these therapies on mast cells (MCs) and their progenitors has remained largely unexplored. We investigate whether targeting the IL-5 pathway in severe asthma patients could reduce blood MC progenitors
Project description:Severe asthma is a heterogeneous disease with different phenotypes based on clinical, functional or inflammatory parameters. In particular, the eosinophilic phenotype is associated with type 2 inflammation and increased levels of interleukin (IL)-4, IL-5 and IL-13). Monoclonal antibodies that target the eosinophilic inflammatory pathways (IL-5R and IL-5), namely mepolizumab, reslizumab, and benralizumab, are effective and safe for severe eosinophilic asthma. Eosinophils threshold represents the most indicative biomarker for response to treatment with all three monoclonal antibodies. Improvement in asthma symptoms scores, lung function, the number of exacerbations, history of late-onset asthma, chronic rhinosinusitis with nasal polyposis, low oral corticosteroids use and low body mass index represent predictive clinical markers of response. Novel Omics studies are emerging with proteomics data and exhaled breath analyses. These may prove useful as biomarkers of response and non-response biologics. Moreover, future biomarker studies need to be undertaken in paediatric patients affected by severe asthma. The choice of appropriate biologic therapy for severe asthma remains challenging. The importance of finding biomarkers that can predict response continuous an open issue that needs to be further explored. This review describes the clinical effects of targeting the IL-5 pathway in severe asthma in adult and paediatric patients, focusing on predictors of response and non-response.
Project description:The presence of eosinophilic inflammation is a characteristic feature of chronic and acute inflammation in asthma. An estimated 5%-10% of the 300 million people worldwide who suffer from asthma have a severe form. Patients with eosinophilic airway inflammation represent approximately 40%-60% of this severe asthmatic population. This form of asthma is often uncontrolled, marked by refractoriness to standard therapy, and shows persistent airway eosinophilia despite glucocorticoid therapy. This paper reviews personalized novel therapies, more specifically benralizumab, a humanized anti-IL-5Rα antibody, while also being the first to provide an algorithm for potential candidates who may benefit from anti-IL-5Rα therapy.
Project description:BackgroundIL-17A has been implicated in severe forms of asthma. However, the factors that promote IL-17A production during the pathogenesis of severe asthma remain undefined. Diesel exhaust particles (DEPs) are a major component of traffic-related air pollution and are implicated in asthma pathogenesis and exacerbation.ObjectiveWe sought to determine the mechanism by which DEP exposure affects asthma severity using human and mouse studies.MethodsBALB/c mice were challenged with DEPs with or without house dust mite (HDM) extract. Airway inflammation and function, bronchoalveolar lavage fluid cytokine levels, and flow cytometry of lung T cells were assessed. The effect of DEP exposure on the frequency of asthma symptoms and serum cytokine levels was determined in children with allergic asthma.ResultsIn mice exposure to DEPs alone did not induce asthma. DEP and HDM coexposure markedly enhanced airway hyperresponsiveness compared with HDM exposure alone and generated a mixed T(H)2 and T(H)17 response, including IL-13(+)IL-17A(+) double-producing T cells. IL-17A neutralization prevented DEP-induced exacerbation of airway hyperresponsiveness. Among 235 high DEP-exposed children with allergic asthma, 32.2% had more frequent asthma symptoms over a 12-month period compared with only 14.2% in the low DEP-exposed group (P = .002). Additionally, high DEP-exposed children with allergic asthma had nearly 6 times higher serum IL-17A levels compared with low DEP-exposed children.ConclusionsExpansion of T(H)17 cells contributes to DEP-mediated exacerbation of allergic asthma. Neutralization of IL-17A might be a useful potential therapeutic strategy to counteract the asthma-promoting effects of traffic-related air pollution, especially in highly exposed patients with severe allergic asthma.
Project description:Asthma is a common disease with profoundly variable natural history and patient morbidity. Heterogeneity has long been appreciated, and much work has focused on identifying subgroups of patients with similar pathobiological underpinnings. Previous studies of the Severe Asthma Research Program (SARP) cohort linked gene expression changes to specific clinical and physiologic characteristics. While invaluable for hypothesis generation, these data include extensive candidate gene lists that complicate target identification and validation. In this analysis, we performed unsupervised clustering of the SARP cohort using bronchial epithelial cell gene expression data, identifying a transcriptional signature for participants suffering exacerbation-prone asthma with impaired lung function. Clinically, participants in this asthma cluster exhibited a mixed inflammatory process and bore transcriptional hallmarks of NF-κB and activator protein 1 (AP-1) activation, despite high corticosteroid exposure. Using supervised machine learning, we found a set of 31 genes that classified patients with high accuracy and could reconstitute clinical and transcriptional hallmarks of our patient clustering in an external cohort. Of these genes, IL18R1 (IL-18 Receptor 1) negatively associated with lung function and was highly expressed in the most severe patient cluster. We validated IL18R1 protein expression in lung tissue and identified downstream NF-κB and AP-1 activity, supporting IL-18 signaling in severe asthma pathogenesis and highlighting this approach for gene and pathway discovery.
Project description:BackgroundSevere asthma in children is a heterogeneous disorder associated with variable responses to corticosteroid treatment. Criterion standards for corticosteroid responsiveness assessment in children are lacking.ObjectiveThis study sought to characterize systemic corticosteroid responses in children with severe asthma after treatment with intramuscular triamcinolone and to identify phenotypic and molecular predictors of an intramuscular triamcinolone response.MethodsAsthma-related quality of life, exhaled nitric oxide, blood eosinophils, lung function, and inflammatory cytokine and chemokine mRNA gene expression in peripheral blood mononuclear cells were assessed in 56 children with severe asthma at baseline and 14 days after intramuscular triamcinolone injection. The Asthma Control Questionnaire was used to classify children with severe asthma into corticosteroid response groups.ResultsThree groups of children with severe asthma were identified: controlled severe asthma, children who achieved control after triamcinolone, and children who did not achieve control. At baseline, these groups were phenotypically similar. After triamcinolone, discordance between symptoms, lung function, exhaled nitric oxide, and blood eosinophils was noted. Clinical phenotypic predictors were of limited utility in predicting the triamcinolone response, whereas systemic mRNA expression of inflammatory cytokines and chemokines related to IL-2, IL-10, and TNF signaling pathways, namely, AIMP1, CCR2, IL10RB, and IL5, strongly differentiated children who failed to achieve control with triamcinolone administration.ConclusionsSystemic corticosteroid responsiveness in children with severe asthma is heterogeneous. Alternative prediction models that include molecular endotypic as well as clinical phenotypic features are needed to identify which children derive the most clinical benefit from systemic corticosteroid step-up therapy given the potential side effects.
Project description:The current developments of the new biological drugs targeting interleukin 5 (IL-5) and IL-5 receptor allowed to expand the treatment options for severe hypereosinophilic asthma. Clinicians will then be able to choose between antibodies targeting either circulating IL-5 or its receptor expressed on eosinophils and basophils. The available clinical trials consistently reported favorable results about the reduction of exacerbations rate, improvement in quality of life, and sparing of the systemic steroid use, with a favorable safety profile. Two of these new drugs are administered subcutaneously, mepolizumab every 4 weeks and benralizumab every 8 weeks, whereas reslizumab is given intravenously monthly on a weigh-based dose. In the future, the research actions will be involved in the identification of a single biomarker or multiple biomarkers for the optimal choice of biological agents to be properly prescribed.
Project description:BackgroundTH2 cytokines are not responsible for the ongoing symptoms and pathology in children with severe therapy-resistant asthma (STRA). IL-33 induces airway hyperresponsiveness, but its role in airway remodeling and steroid resistance is unknown.ObjectiveWe sought to investigate the relationship between IL-33 and airway remodeling in pediatric patients with STRA.MethodsIL-33 levels were quantified in neonatal mice given inhaled house dust mite (HDM), and the effect of blocking IL-13 on remodeling and IL-33 levels was assessed. HDM-induced allergic airways disease (AAD) in neonatal ST2(-/-) mice lacking the IL-33 receptor was assessed, together with collagen production after IL-33 administration. The effect of steroid therapy on IL-33 levels in patients with neonatal AAD was explored. IL-33 expression was quantified in endobronchial biopsy (EB) specimens from children with STRA and related to remodeling, and collagen production by airway fibroblasts from pediatric patients stimulated with IL-33 and budesonide was quantified.ResultsBlocking IL-13 after AAD was established in neonatal mice and did not reduce remodeling or IL-33 levels; airway hyperresponsiveness was only partially reduced. IL-33 promoted collagen synthesis both from asthmatic fibroblasts from pediatric patients and after intranasal administration in mice. Increased cellular expression of IL-33, but not IL-13, was associated with increased reticular basement membrane thickness in EB specimens from children with STRA, whereas remodeling was absent in HDM-exposed ST2(-/-) mice. IL-33 levels were maintained, whereas IL-13 levels were abrogated by steroid treatment in neonatal HDM-exposed mice and in EB specimens from children with STRA.ConclusionIL-33 is a relatively steroid-resistant mediator that promotes airway remodeling in patients with STRA and is an important therapeutic target.