Discovery of the propargyl radical (CH2CCH) in TMC-1: one of the most abundant radicals ever found and a key species for cyclization to benzene in cold dark clouds⋆
Ontology highlight
ABSTRACT: We present the first identification in interstellar space of the propargyl radical (CH2CCH). This species was observed in the cold dark cloud TMC-1 using the Yebes 40m telescope. The six strongest hyperfine components of the 20,2-10,1 rotational transition, lying at 37.46 GHz, were detected with signal-to-noise ratios in the range 4.6-12.3 σ. We derive a column density of 8.7 × 1013 cm−2 for CH2CCH, which translates to a fractional abundance relative to H2 of 8.7 × 10−9. This radical has a similar abundance to methyl acetylene, with an abundance ratio CH2CCH/CH3CCH close to one. The propargyl radical is thus one of the most abundant radicals detected in TMC-1, and it is probably the most abundant organic radical with a certain chemical complexity ever found in a cold dark cloud. We constructed a gas-phase chemical model and find calculated abundances that agree with, or fall two orders of magnitude below, the observed value depending on the poorly constrained low-temperature reactivity of CH2CCH with neutral atoms. According to the chemical model, the propargyl radical is essentially formed by the C + C2H4 reaction and by the dissociative recombination of C3Hn+ ions with n = 4-6. The propargyl radical is believed to control the synthesis of the first aromatic ring in combustion processes, and it probably plays a key role in the synthesis of large organic molecules and cyclization processes to benzene in cold dark clouds.
SUBMITTER: Agundez M
PROVIDER: S-EPMC7610583 | biostudies-literature |
REPOSITORIES: biostudies-literature
ACCESS DATA