HACE1 Prevents Lung Carcinogenesis via Inhibition of RAC-Family GTPases.
Ontology highlight
ABSTRACT: HACE1 is an E3 ubiquitin ligase with important roles in tumor biology and tissue homeostasis. Loss or mutation of HACE1 has been associated with the occurrence of a variety of neoplasms, but the underlying mechanisms have not been defined yet. Here, we report that HACE1 is frequently mutated in human lung cancer. In mice, loss of Hace1 led to enhanced progression of KRasG12D -driven lung tumors. Additional ablation of the oncogenic GTPase Rac1 partially reduced progression of Hace1-/- lung tumors. RAC2, a novel ubiquitylation target of HACE1, could compensate for the absence of its homolog RAC1 in Hace1-deficient, but not in HACE1-sufficient tumors. Accordingly, ablation of both Rac1 and Rac2 fully averted the increased progression of KRasG12D -driven lung tumors in Hace1-/- mice. In patients with lung cancer, increased expression of HACE1 correlated with reduced levels of RAC1 and RAC2 and prolonged survival, whereas elevated expression of RAC1 and RAC2 was associated with poor prognosis. This work defines HACE1 as a crucial regulator of the oncogenic activity of RAC-family GTPases in lung cancer development. SIGNIFICANCE: These findings reveal that mutation of the tumor suppressor HACE1 disrupts its role as a regulator of the oncogenic activity of RAC-family GTPases in human and murine lung cancer. GRAPHICAL ABSTRACT: http://cancerres.aacrjournals.org/content/canres/80/14/3009/F1.large.jpg.
Project description:HACE1 is an E3 ubiquitin ligase with important roles in tumor biology and tissue homeostasis. Loss or mutation of HACE1 has been associated with the occurrence of a variety of neoplasms, but the underlying mechanisms have not been defined yet. Here we report that HACE1 is frequently mutated in human lung cancer. In mice, loss of Hace1 led to enhanced progression of KRasG12D-driven lung tumors. Additional ablation of the oncogenic GTPase Rac1 partially reduced progression of Hace1-/- lung tumors. RAC2, a novel ubiquitylation target of HACE1, could compensate for the absence of its homolog RAC1 in Hace1-deficient, but not in HACE1-sufficient tumors. Accordingly, ablation of both Rac1 and Rac2 fully averted the increased progression of KRasG12D-driven lung tumors in Hace1-/- mice. In lung cancer patients, increased expression of HACE1 correlated with reduced levels of RAC1 and RAC2 and prolonged survival, while elevated expression of RAC1 and RAC2 was associated with poor prognosis. This work defines HACE1 as a crucial regulator of the oncogenic activity of RAC-family GTPases in lung cancer development.
Project description:BackgroundCadmium, an established carcinogen, is a risk factor for prostate cancer. Induction of autophagy is a prerequisite for cadmium-induced transformation and metastasis. The ability of Psoralidin (Pso), a non-toxic, orally bioavailable compound to inhibit cadmium-induced autophagy to prevent prostate cancer was investigated.MethodsPsoralidin was studied using cadmium-transformed prostate epithelial cells (CTPE), which exhibit high proliferative, invasive and colony forming abilities. Gene and protein expression were evaluated by qPCR, western blot, immunohistochemistry and immunofluorescence. Xenograft models were used to study the chemopreventive effects in vivo.ResultsCadmium-transformed prostate epithelial cells were treated with Pso resulting in growth inhibition, without causing toxicity to normal prostate epithelial cells (RWPE-1). Psoralidin-treatment of CTPE cells inhibited the expression of Placenta Specific 8, a lysosomal protein essential for autophagosome and autolysosome fusion, which resulted in growth inhibition. Additionally, Pso treatment caused decreased expression of pro-survival signalling proteins, NFκB and Bcl2, and increased expression of apoptotic genes. In vivo, Pso effectively suppressed CTPE xenografts growth, without any observable toxicity. Tumours from Pso-treated animals showed decreased autophagic morphology, mesenchymal markers expression and increased epithelial protein expression.ConclusionsThese results confirm that inhibition of autophagy by Pso plays an important role in the chemoprevention of cadmium-induced prostate carcinogenesis.
Project description:Lung cancer chemoprevention with the prostacyclin analogue iloprost is the most promising approach to date for intercepting progression of premalignant lung lesions in former smokers. Previous preclinical studies of iloprost used oral delivery, but a study modeling delivery directly to the target organ was needed. In vivo and in vitro studies have identified gene expression changes following iloprost treatment, including increased e-cadherin and Ppargγ and decreased COX2 and vimentin. We used tumor counts and gene expression to demonstrate the effectiveness of intranasal delivery of iloprost in a murine model of premalignant adenomas. Intranasal delivery of iloprost reduced adenoma multiplicity 14 weeks after urethane exposure in FVB/N mice compared with untreated urethane controls. Intranasal iloprost reversed urethane-induced gene expression changes in tumors and whole lung. These results correspond to previous studies of oral iloprost and in vitro treatment of human bronchial epithelial cells. This study demonstrates that intranasal delivery of iloprost in a mouse model of lung premalignant lesions is effective chemoprevention. This will be an essential tool for exploring mechanisms and outcomes of iloprost chemoprevention, along with supporting ongoing clinical trials of inhaled iloprost chemoprevention. PREVENTION RELEVANCE: Iloprost is a promising chemoprevention agent for lung cancer and this work describes a new delivery approach in vivo.
Project description:Development of the mammalian inner ear requires coordination of cell proliferation, cell fate determination and morphogenetic movements. While significant progress has been made in identifying developmental signals required for inner ear formation, less is known about how distinct signals are coordinated by their downstream mediators. Members of the Rac family of small GTPases are known regulators of cytoskeletal remodeling and numerous other cellular processes. However, the function of Rac GTPases in otic development is largely unexplored. Here, we show that Rac1 and Rac3 redundantly regulate many aspects of inner ear morphogenesis. While no morphological defects were observed in Rac3(-/-) mice, Rac1(CKO); Rac3(-/-) double mutants displayed enhanced vestibular and cochlear malformations compared to Rac1(CKO) single mutants. Moreover, in Rac1(CKO); Rac3(-/-) mutants, we observed compromised E-cadherin-mediated cell adhesion, reduced cell proliferation and increased cell death in the early developing otocyst, leading to a decreased size and malformation of the membranous labyrinth. Finally, cochlear extension was severely disrupted in Rac1(CKO); Rac3(-/-) mutants, accompanied by a loss of epithelial cohesion and formation of ectopic sensory patches underneath the cochlear duct. The compartmentalized expression of otic patterning genes within the Rac1(CKO); Rac3(-/-) mutant otocyst was largely normal, however, indicating that Rac proteins regulate inner ear morphogenesis without affecting cell fate specification. Taken together, our results reveal an essential role for Rac GTPases in coordinating cell adhesion, cell proliferation, cell death and cell movements during otic development.
Project description:An acquired somatic mutation at codon 816 in the KIT receptor tyrosine kinase is associated with poor prognosis in patients with systemic mastocytosis and acute myeloid leukemia (AML). Treatment of leukemic cells bearing this mutation with an allosteric inhibitor of p21-activated kinase (Pak) or its genetic inactivation results in growth repression due to enhanced apoptosis. Inhibition of the upstream effector Rac abrogates the oncogene-induced growth and activity of Pak. Although both Rac1 and Rac2 are constitutively activated via the guanine nucleotide exchange factor (GEF) Vav1, loss of Rac1 or Rac2 alone moderately corrected the growth of KIT-bearing leukemic cells, whereas the combined loss resulted in 75% growth repression. In vivo, the inhibition of Vav or Rac or Pak delayed the onset of myeloproliferative neoplasms (MPNs) and corrected the associated pathology in mice. To assess the role of Rac GEFs in oncogene-induced transformation, we used an inhibitor of Rac, EHop-016, which specifically targets Vav1 and found that EHop-016 was a potent inhibitor of human and murine leukemic cell growth. These studies identify Pak and Rac GTPases, including Vav1, as potential therapeutic targets in MPN and AML involving an oncogenic form of KIT.
Project description:Rho family GTPases play integral roles in neuronal differentiation and survival. We have shown previously that Clostridium difficile toxin B (ToxB), an inhibitor of RhoA, Rac1, and Cdc42, induces apoptosis of cerebellar granule neurons (CGNs). In this study, we compared the effects of ToxB to a selective inhibitor of the Rac-specific guanine nucleotide exchange factors Tiam1 and Trio (NSC23766). In a manner similar to ToxB, selective inhibition of Rac induces CGN apoptosis associated with enhanced caspase-3 activation and reduced phosphorylation of the Rac effector p21-activated kinase. In contrast to ToxB, caspase inhibitors do not protect CGNs from targeted inhibition of Rac. Also dissimilar to ToxB, selective inhibition of Rac does not inhibit MEK1/2/ERK1/2 or activate JNK/c-Jun. Instead, targeted inhibition of Rac suppresses distinct MEK5/ERK5, p90Rsk, and Akt-dependent signaling cascades known to regulate the localization and expression of the Bcl-2 homology 3 domain-only protein Bad. Adenoviral expression of a constitutively active mutant of MEK5 is sufficient to attenuate neuronal cell death induced by selective inhibition of Rac with NSC23766 but not apoptosis induced by global inhibition of Rho GTPases with ToxB. Collectively, these data demonstrate that global suppression of Rho family GTPases with ToxB causes a loss of MEK1/2/ERK1/2 signaling and activation of JNK/c-Jun, resulting in diminished degradation and enhanced transcription of the Bcl-2 homology 3 domain-only protein Bim. In contrast, selective inhibition of Rac induces CGN apoptosis by repressing unique MEK5/ERK5, p90Rsk, and Akt-dependent prosurvival pathways, ultimately leading to enhanced expression, dephosphorylation, and mitochondrial localization of proapoptotic Bad.
Project description:Rho family GTPases regulate a wide range of cellular processes. This includes cellular dynamics where three subfamilies, Rho, Rac, and Cdc42, are known to regulate cell shape and migration though coordinate action. Activation of Rho proteins largely depends on Rho Guanine nucleotide Exchange Factors (RhoGEFs) through a catalytic Dbl homology (DH) domain linked to a pleckstrin homology (PH) domain that subserves various functions. The PH domains from Lbc RhoGEFs, which specifically activate RhoA, have been shown to bind to activated RhoA. Here, p190RhoGEF is shown to also bind Rac1·GTP. Crystal structures reveal that activated Rac1 and RhoA use their effector-binding surfaces to associate with the same hydrophobic surface on the PH domain. Both activated RhoA and Rac1 can stimulate exchange of nucleotide on RhoA by localization of p190RhoGEF to its substrate, RhoA·GDP, in vitro. The binding of activated RhoA provides a mechanism for positive feedback regulation as previously proposed for the family of Lbc RhoGEFs. In contrast, the novel interaction between activated Rac1 and p190RhoGEF reveals a potential mechanism for cross-talk regulation where Rac can directly effect stimulation of RhoA. The greater capacity of Rac1 to stimulate p190RhoGEF among the Lbc RhoGEFs suggests functional specialization.
Project description:RAC proteins are small GTPases involved in important cellular processes in eukaryotes, and their deregulation may contribute to cancer. Activation of RAC proteins is regulated by DOCK and DBL protein families of guanine nucleotide exchange factors (GEFs). Although DOCK and DBL proteins act as GEFs on RAC proteins, DOCK and DBL family members are evolutionarily unrelated. To understand how DBL and DOCK families perform the same function on RAC proteins despite their unrelated primary structure, phylogenetic analyses of the RAC, DBL, and DOCK families were implemented, and interaction patterns that may suggest a coevolutionary process were searched. Interestingly, while RAC and DOCK proteins are very well conserved in humans and among eukaryotes, DBL proteins are highly divergent. Moreover, correlation analyses of the phylogenetic distances of RAC and GEF proteins and covariation analyses between residues in the interacting domains showed significant coevolution rates for both RAC-DOCK and RAC-DBL interactions.