Regulatory T-cell Transcriptomic Reprogramming Characterizes Adverse Events by Checkpoint Inhibitors in Solid Tumors.
Ontology highlight
ABSTRACT: Immune checkpoint inhibitors (ICI), which target immune regulatory pathways to unleash antitumor responses, have revolutionized cancer immunotherapy. Despite the remarkable success of ICI immunotherapy, a significant proportion of patients whose tumors respond to these treatments develop immune-related adverse events (irAE) resembling autoimmune diseases. Although the clinical spectrum of irAEs is well characterized, their successful management remains empiric. This is in part because the pathogenic mechanisms involved in the breakdown of peripheral tolerance and induction of irAEs remain elusive. Herein, we focused on regulatory T cells (Treg) in individuals with irAEs because these cells are vital for maintenance of peripheral tolerance, appear expanded in the peripheral blood of individuals with cancer, and abundantly express checkpoint molecules, hence representing direct targets of ICI immunotherapy. Our data demonstrate an intense transcriptomic reprogramming of CD4+CD25+CD127- Tregs in the blood of individuals with advanced metastatic melanoma who develop irAEs following ICI immunotherapy, with a characteristic inflammatory, apoptotic, and metabolic signature. This inflammatory signature was shared by Tregs from individuals with different types of cancer developing irAEs and individuals with autoimmune diseases. Our findings suggest that inflammatory Treg reprogramming is a feature of immunotherapy-induced irAEs, and this may facilitate translational approaches aiming to induce robust antitumor immunity without disturbing peripheral tolerance.
SUBMITTER: Grigoriou M
PROVIDER: S-EPMC7611354 | biostudies-literature |
REPOSITORIES: biostudies-literature
ACCESS DATA