Unknown

Dataset Information

0

Ultrasensitive plasma-based monitoring of tumor burden using machine-learning-guided signal enrichment.


ABSTRACT: In solid tumor oncology, circulating tumor DNA (ctDNA) is poised to transform care through accurate assessment of minimal residual disease (MRD) and therapeutic response monitoring. To overcome the sparsity of ctDNA fragments in low tumor fraction (TF) settings and increase MRD sensitivity, we previously leveraged genome-wide mutational integration through plasma whole-genome sequencing (WGS). Here we now introduce MRD-EDGE, a machine-learning-guided WGS ctDNA single-nucleotide variant (SNV) and copy-number variant (CNV) detection platform designed to increase signal enrichment. MRD-EDGESNV uses deep learning and a ctDNA-specific feature space to increase SNV signal-to-noise enrichment in WGS by ~300× compared to previous WGS error suppression. MRD-EDGECNV also reduces the degree of aneuploidy needed for ultrasensitive CNV detection through WGS from 1 Gb to 200 Mb, vastly expanding its applicability within solid tumors. We harness the improved performance to identify MRD following surgery in multiple cancer types, track changes in TF in response to neoadjuvant immunotherapy in lung cancer and demonstrate ctDNA shedding in precancerous colorectal adenomas. Finally, the radical signal-to-noise enrichment in MRD-EDGESNV enables plasma-only (non-tumor-informed) disease monitoring in advanced melanoma and lung cancer, yielding clinically informative TF monitoring for patients on immune-checkpoint inhibition.

SUBMITTER: Widman AJ 

PROVIDER: S-EPMC7616143 | biostudies-literature | 2024 Jun

REPOSITORIES: biostudies-literature

altmetric image

Publications

Ultrasensitive plasma-based monitoring of tumor burden using machine-learning-guided signal enrichment.

Widman Adam J AJ   Shah Minita M   Frydendahl Amanda A   Halmos Daniel D   Khamnei Cole C CC   Øgaard Nadia N   Rajagopalan Srinivas S   Arora Anushri A   Deshpande Aditya A   Hooper William F WF   Quentin Jean J   Bass Jake J   Zhang Mingxuan M   Langanay Theophile T   Andersen Laura L   Steinsnyder Zoe Z   Liao Will W   Rasmussen Mads Heilskov MH   Rasmussen Mads Heilskov MH   Henriksen Tenna Vesterman TV   Jensen Sarah Østrup SØ   Nors Jesper J   Therkildsen Christina C   Sotelo Jesus J   Brand Ryan R   Schiffman Joshua S JS   Shah Ronak H RH   Cheng Alexandre Pellan AP   Maher Colleen C   Spain Lavinia L   Krause Kate K   Frederick Dennie T DT   den Brok Wendie W   Lohrisch Caroline C   Shenkier Tamara T   Simmons Christine C   Villa Diego D   Mungall Andrew J AJ   Moore Richard R   Zaikova Elena E   Cerda Viviana V   Kong Esther E   Lai Daniel D   Malbari Murtaza S MS   Marton Melissa M   Manaa Dina D   Winterkorn Lara L   Gelmon Karen K   Callahan Margaret K MK   Boland Genevieve G   Potenski Catherine C   Wolchok Jedd D JD   Saxena Ashish A   Turajlic Samra S   Imielinski Marcin M   Berger Michael F MF   Aparicio Sam S   Altorki Nasser K NK   Postow Michael A MA   Robine Nicolas N   Andersen Claus Lindbjerg CL   Landau Dan A DA  

Nature medicine 20240614 6


In solid tumor oncology, circulating tumor DNA (ctDNA) is poised to transform care through accurate assessment of minimal residual disease (MRD) and therapeutic response monitoring. To overcome the sparsity of ctDNA fragments in low tumor fraction (TF) settings and increase MRD sensitivity, we previously leveraged genome-wide mutational integration through plasma whole-genome sequencing (WGS). Here we now introduce MRD-EDGE, a machine-learning-guided WGS ctDNA single-nucleotide variant (SNV) and  ...[more]

Similar Datasets

| EGAS00001007545 | EGA
| EGAS00001007306 | EGA
| EGAS00001007451 | EGA
| S-EPMC10629210 | biostudies-literature
| S-EPMC11195061 | biostudies-literature
| S-EPMC10288272 | biostudies-literature
| S-EPMC8062585 | biostudies-literature
| S-EPMC9756344 | biostudies-literature
2017-02-01 | GSE85033 | GEO
| S-EPMC10657897 | biostudies-literature