Fluoroquinolone resistance of Staphylococcus epidermidis isolated from healthy conjunctiva and analysis of their mutations in quinolone-resistance determining region.
Ontology highlight
ABSTRACT: BACKGROUND:Staphylococcus epidermidis is the most common pathogen in postoperative endophthalmitis and causes various infectious eye diseases. However, there is very little information on fluoroquinolone antibiotic resistance to S. epidermidis identified in conjunctival microbe and analysis of related genes. Here, the authors investigated the rate of resistance to fluoroquinolones of Staphylococcus epidermidis isolated from normal conjunctival microbes and mutations in the quinolone-resistance determining region (QRDR). METHODS:377 eye samples from 187 patients who underwent intravitreal injection and cataract surgery were included. Specimens were taken from the bilateral lower conjunctival sacs using a cotton swab and cultured. The cultures were identified using MALDI-TOP MS and gyrA, gyrB, parC, and parE gene mutations of QRDR were confirmed by DNA extraction from resistant strains of S. epidermidis with a micro-dilution method using ciprofloxacin, levofloxacin, and moxifloxacin. RESULTS:The culture positive rate was 61.8% (231) for 374 eye samples. Of the 303 total strains cultured, S. epidermidis was the most common with 33.7% (102). Ten types of gene mutations were observed in the resistant S. epidermidis of 21 strains. One-point mutation was observed mainly in gyrA and parC, and a small number of mutations were observed in parE in the form of a double point mutations. When there were multiple point mutations in both gyrA and parC, the highest minimum inhibitory concentration was observed. CONCLUSIONS:The quinolone resistance rate of S. epidermidis increased in comparison with previous studies, and resistant S. epidermidis showed mostly QRDR mutations, which were mainly found in gyrA and parC, and showed strong resistance when mutated in both genes.
SUBMITTER: Kang JY
PROVIDER: S-EPMC7640383 | biostudies-literature | 2020 Nov
REPOSITORIES: biostudies-literature
ACCESS DATA