Merkel Cell Polyomavirus Small T Antigen Activates Noncanonical NF-κB Signaling to Promote Tumorigenesis.
Ontology highlight
ABSTRACT: Multiple human polyomaviruses (HPyV) can infect the skin, but only Merkel cell polyomavirus (MCPyV) has been implicated in the development of a cancer, Merkel cell carcinoma (MCC). While expression of HPyV6, HPyV7, and MCPyV small T antigens (sT), all induced a senescence-associated secretory phenotype (SASP), MCPyV sT uniquely activated noncanonical NF-κB (ncNF-κB), instead of canonical NF-κB signaling, to evade p53-mediated cellular senescence. Through its large T stabilization domain, MCPyV sT activated ncNF-κB signaling both by inducing H3K4 trimethylation-mediated increases of NFKB2 and RELB transcription and also by promoting NFKB2 stabilization and activation through FBXW7 inhibition. Noncanonical NF-κB signaling was required for SASP cytokine secretion, which promoted the proliferation of MCPyV sT-expressing cells through autocrine signaling. Virus-positive MCC cell lines and tumors showed ncNF-κB pathway activation and SASP gene expression, and the inhibition of ncNF-κB signaling prevented VP-MCC cell growth in vitro and in xenografts. We identify MCPyV sT-induced ncNF-κB signaling as an essential tumorigenic pathway in MCC. IMPLICATIONS: This work is the first to identify the activation of ncNF-κB signaling by any polyomavirus and its critical role in MCC tumorigenesis.
SUBMITTER: Zhao J
PROVIDER: S-EPMC7641980 | biostudies-literature |
REPOSITORIES: biostudies-literature
ACCESS DATA