Unknown

Dataset Information

0

How Rh surface breaks CO2 molecules under ambient pressure.


ABSTRACT: Utilization of carbon dioxide (CO2) molecules leads to increased interest in the sustainable synthesis of methane (CH4) or methanol (CH3OH). The representative reaction intermediate consisting of a carbonyl or formate group determines yields of the fuel source during catalytic reactions. However, their selective initial surface reaction processes have been assumed without a fundamental understanding at the molecular level. Here, we report direct observations of spontaneous CO2 dissociation over the model rhodium (Rh) catalyst at 0.1 mbar CO2. The linear geometry of CO2 gas molecules turns into a chemically active bent-structure at the interface, which allows non-uniform charge transfers between chemisorbed CO2 and surface Rh atoms. By combining scanning tunneling microscopy, X-ray photoelectron spectroscopy at near-ambient pressure, and computational calculations, we reveal strong evidence for chemical bond cleavage of O?CO* with ordered intermediates structure formation of (2?×?2)-CO on an atomically flat Rh(111) surface at room temperature.

SUBMITTER: Kim J 

PROVIDER: S-EPMC7648795 | biostudies-literature | 2020 Nov

REPOSITORIES: biostudies-literature

altmetric image

Publications

How Rh surface breaks CO<sub>2</sub> molecules under ambient pressure.

Kim Jeongjin J   Ha Hyunwoo H   Doh Won Hui WH   Ueda Kohei K   Mase Kazuhiko K   Kondoh Hiroshi H   Mun Bongjin Simon BS   Kim Hyun You HY   Park Jeong Young JY  

Nature communications 20201106 1


Utilization of carbon dioxide (CO<sub>2</sub>) molecules leads to increased interest in the sustainable synthesis of methane (CH<sub>4</sub>) or methanol (CH<sub>3</sub>OH). The representative reaction intermediate consisting of a carbonyl or formate group determines yields of the fuel source during catalytic reactions. However, their selective initial surface reaction processes have been assumed without a fundamental understanding at the molecular level. Here, we report direct observations of s  ...[more]

Similar Datasets

| S-EPMC10254919 | biostudies-literature
| S-EPMC9064975 | biostudies-literature
| S-EPMC10521022 | biostudies-literature
| S-EPMC6119302 | biostudies-literature
| S-EPMC6371756 | biostudies-literature
| S-EPMC6906936 | biostudies-literature
| S-EPMC8883796 | biostudies-literature
| S-EPMC7910525 | biostudies-literature
| S-EPMC9043122 | biostudies-literature
| S-EPMC7997401 | biostudies-literature