Computer-aided prediction and design of IL-6 inducing peptides: IL-6 plays a crucial role in COVID-19.
Ontology highlight
ABSTRACT: Interleukin 6 (IL-6) is a pro-inflammatory cytokine that stimulates acute phase responses, hematopoiesis and specific immune reactions. Recently, it was found that the IL-6 plays a vital role in the progression of COVID-19, which is responsible for the high mortality rate. In order to facilitate the scientific community to fight against COVID-19, we have developed a method for predicting IL-6 inducing peptides/epitopes. The models were trained and tested on experimentally validated 365 IL-6 inducing and 2991 non-inducing peptides extracted from the immune epitope database. Initially, 9149 features of each peptide were computed using Pfeature, which were reduced to 186 features using the SVC-L1 technique. These features were ranked based on their classification ability, and the top 10 features were used for developing prediction models. A wide range of machine learning techniques has been deployed to develop models. Random Forest-based model achieves a maximum AUROC of 0.84 and 0.83 on training and independent validation dataset, respectively. We have also identified IL-6 inducing peptides in different proteins of SARS-CoV-2, using our best models to design vaccine against COVID-19. A web server named as IL-6Pred and a standalone package has been developed for predicting, designing and screening of IL-6 inducing peptides (https://webs.iiitd.edu.in/raghava/il6pred/).
SUBMITTER: Dhall A
PROVIDER: S-EPMC7665369 | biostudies-literature | 2020 Oct
REPOSITORIES: biostudies-literature
ACCESS DATA