Project description:Since the beginning of the SARS-CoV-2 pandemic, the treatments and management of the deadly COVID-19 disease have made great progress. The strategies for developing novel treatments against COVID-19 include antiviral small molecule drugs, cell and gene therapies, immunomodulators, neutralizing antibodies, and combination therapies. Among them, immunomodulators are the most studied treatments. The small molecule antiviral drugs and immunoregulators are expected to be effective against viral variants of SARS-CoV-2 as these drugs target either conservative parts of the virus or common pathways of inflammation. Although the immunoregulators have shown benefits in reducing mortality of cytokine release syndrome (CRS) triggered by SARS-CoV-2 infections, extensive investigations on this class of treatment to launch novel therapies that substantially improve efficacy and reduce side effects are still warranted. Moreover, great challenges have emerged as the SARS-CoV-2 virus quickly, frequently, and continuously evolved. This review provides an update and summarizes the recent advances in the treatment of COVID-19 and in particular emphasized the strategies in managing CRS triggered by SARS-CoV-2. A brief perspective in the battle against the deadly disease was also provided.
Project description:Cytokine release syndrome (CRS) is one of the leading causes of mortality in COVID-19 patients caused by the SARS-CoV-2 coronavirus. However, the mechanism of CRS induced by SARS-CoV-2 is vague. This study shows that dendritic cells loaded with spike protein of SARS-CoV-2 stimulate T cells to release much more IL-2, which subsequently cooperates with spike protein to facilitate peripheral blood mononuclear cells to release IL-1β, IL-6, and IL-8. The aim of this sequencing is to find the key molecular of IL-2 synergistic spike protein releasing much more inflammatory factors in PBMCs and to explore the molecular mechanism.
Project description:While adults with Down syndrome (DS) are at increased risk of severe COVID-19 pneumonia, little is known about COVID-19 in children with DS. In children without DS, SARS-CoV-2 can rarely cause severe COVID-19 pneumonia, or an even rarer and more typically pediatric condition, multisystem inflammatory syndrome in children (MIS-C). Although the underlying mechanisms are still unknown, MIS-C is thought to be primarily immune-mediated. Here, we describe an atypical, severe form of MIS-C in two infant girls with DS who were hospitalized for over 4 months. Immunological evaluation revealed pronounced neutrophilia, B cell depletion, increased circulating IL-6 and IL-8, and elevated markers of immune activation ICAM1 and FcɣRI. Importantly, uninfected children with DS presented with similar but less stark immune features at steady state, possibly explaining risk of further uncontrolled inflammation following SARS-CoV-2 infection. Overall, a severe, atypical form of MIS-C may occur in children with DS.
Project description:Immune checkpoint inhibitors (ICIs) have proven effective in the treatment of numerous cancers; however, they have been associated with immune-related adverse events (irAEs), among which cytokine release syndrome (CRS) has been reported in a few case reports. To describe the burden of ICI-related CRS and raise awareness of CRS as irAE, we queried VigiBase, the World Health Organization global database of spontaneously reported suspected adverse drug reactions (ADRs), and retrieved safety reports of suspected CRS associated with ICIs, gathered in the database through January 12th 2020. We assessed ICI-related CRS safety reports in terms of geographical and temporal patterns of reporting, patient demographics and clinical features, treatment characteristics, CRS clinical presentation, timing, seriousness, and outcome. We retrieved 58 cases of whom 43 (74%) reported CRS with anti-programmed death-1/anti-programmed death-ligand 1 agents. Melanoma (n=17, 29%) and hematologic malignancies (n=16, 28%) were the most common underlying cancers. ICIs were the solely suspected drugs in 37 (64%) cases. Typical signs and symptoms of CRS were reported in 25 (43%) patients. ICI-related CRS developed a median of 4 weeks after ICI initiation (IQR 1-18 weeks, n=9, 16%). Besides two fatal cases, CRS recovered/was recovering at the time of reporting in 35 (60%) cases. We observed differences in the geographical pattern of ICI-related CRS reporting, with a high proportion of ICI-related CRS cases in Australia and North America (0.14 and 0.10% respectively). Due to ICI expanding indications, clinicians should be aware that ICIs could contribute to CRS onset in cancer patients as pharmacological triggers.
Project description:Rituximab is a biologic agent that is usually well tolerated. With its increasing use for a myriad of rheumatologic and immunologic conditions, post-marketing surveillance has revealed more side effects. Systemic inflammatory response syndrome associated with cytokine release syndrome (CRS) is a very rare entity associated with the use of rituximab and carries a very high morbidity and case fatality rate. Cases of CRS reported within the literature are of patients with a very high tumor burden leading to a catastrophic cascade of events. We report the case of a patient having post-transplant lymphoproliferative disorder who died of fatal lactic acidosis and CRS within 24 h of receiving rituximab. Understanding the pathophysiology of such cases and identifying patients at risk may help to possibly avert this life-threatening complication.
Project description:Chimeric antigen receptor T cell (CART) therapy represents a novel and a paradigm-shifting approach to treating cancer. Recent clinical successes have widened the applicability of CD19 CART cells for the treatment of relapsed/refractory B-cell NHL, namely tisagenleclucel and axicabtagene ciloleucel. Tisagenleclucel is also approved for relapsed and/or refractory B-ALL up to age 25. CART therapy is associated with unique and potentially life-threatening toxicities, notably cytokine release syndrome (CRS). A better understanding of the pathogenesis of CRS is crucial to ensure proper management. In this review, CRS definitions, profiles, risk factors and grading systems are discussed. Finally, current and novel investigational approaches and therapies for CRS are summarized.
Project description:BackgroundCytokine release syndrome (CRS) plays a pivotal role in the pathophysiology and progression of Coronavirus disease-2019 (COVID-19). Therapeutic plasma exchange (TPE) by removing the pathogenic cytokines is hypothesized to dampen CRS.ObjectiveTo evaluate the outcomes of the patients with COVID-19 having CRS being treated with TPE compared to controls on the standard of care.MethodologyRetrospective propensity score-matched analysis in a single centre from 1st April to 31st July 2020. We retrospectively analyzed data of 280 hospitalized patients developing CRS initially. PSM was used to minimize bias from non-randomized treatment assignment. Using PSM 1:1, 90 patients were selected and assigned to 2 equal groups. Forced matching was done for disease severity, routine standard care and advanced supportive care. Many other Co-variates were matched. Primary outcome was 28 days overall survival. Secondary outcomes were duration of hospitalization, CRS resolution time and timing of viral clearance on Polymerase chain reaction testing.ResultsAfter PS-matching, the selected cohort had a median age of 60 years (range 32-73 in TPE, 37-75 in controls), p = 0.325 and all were males. Median symptoms duration was 7 days (range 3-22 days' TPE and 3-20 days controls), p = 0.266. Disease severity in both groups was 6 (6.6%) moderate, 40 (44.4%) severe and 44 (49%) critical. Overall, 28-day survival was significantly superior in the TPE group (91.1%), 95% CI 78.33-97.76; as compared to PS-matched controls (61.5%), 95% CI 51.29-78.76 (log rank 0.002), p<0.001. Median duration of hospitalization was significantly reduced in the TPE treated group (10 days vs 15 days) (p< 0.01). CRS resolution time was also significantly reduced in the TPE group (6 days vs. 12 days) (p< 0.001). In 71 patients who underwent TPE, the mortality was 0 (n = 43) if TPE was done within the first 12 days of illness while it was 17.9% (deaths 5, n = 28 who received it after 12th day (p = 0.0045).ConclusionAn earlier use of TPE was associated with improved overall survival, early CRS resolution and time to discharge compared to SOC for COVID-19 triggered CRS in this selected cohort of PS-matched male patients from one major hospital in Pakistan.
Project description:Cytokine release syndrome (CRS) may be the key factor in the pathology of severe coronavirus disease 2019 (COVID-19). As a major driver in triggering CRS in patients with COVID-19, interleukin-6 (IL-6) appears to be a promising target for therapeutics. The results of inhibiting both trans- and classical- signaling with marketed IL-6 inhibitors (tocilizumab, siltuximab and sarilumab) in severe COVID-19 patients are effective based on several small studies and case reports thus far. In this review, we described the evidence of the IL-6 response in patients with COVID-19, clarified the pathogenesis of the role of IL-6-mediated CRS in severe COVID-19, and highlighted the rationale for the use of anti-IL-6 agents and key information regarding the potential features of these IL-6 inhibitors in COVID-19 patients.
Project description:The ongoing COVID-19 pandemic is one of the biggest health challenges of recent decades. Among the causes of mortality triggered by SARS-CoV-2 infection, the development of an inflammatory "cytokine storm" (CS) plays a determinant role. Here, we used transcriptomic data from the bronchoalveolar lavage fluid (BALF) of COVID-19 patients undergoing a CS to obtain gene-signatures associated to this pathology. Using these signatures, we interrogated the Connectivity Map (CMap) dataset that contains the effects of over 5000 small molecules on the transcriptome of human cell lines, and looked for molecules which effects on transcription mimic or oppose those of the CS. As expected, molecules that potentiate immune responses such as PKC activators are predicted to worsen the CS. In addition, we identified the negative regulation of female hormones among pathways potentially aggravating the CS, which helps to understand the gender-related differences in COVID-19 mortality. Regarding drugs potentially counteracting the CS, we identified glucocorticoids as a top hit, which validates our approach as this is the primary treatment for this pathology. Interestingly, our analysis also reveals a potential effect of MEK inhibitors in reverting the COVID-19 CS, which is supported by in vitro data that confirms the anti-inflammatory properties of these compounds.