Unknown

Dataset Information

0

A Scientific Rationale for Using Cystic Fibrosis Transmembrane Conductance Regulator Therapeutics in COVID-19 Patients.


ABSTRACT: Several pathological manifestations in coronavirus disease 2019 (COVID-19), including thick mucus, poor mucociliary clearance, and bronchial wall thickening, overlap with cystic fibrosis disease patterns and may be indicative of "acquired" cystic fibrosis transmembrane conductance regulator (CFTR) dysfunction. Indeed, tumor necrosis factor (TNF), a key cytokine driving COVID-19 pathogenesis, downregulates lung CFTR protein expression, providing a strong rationale that acquired CFTR dysfunction arises in the context of COVID-19 infection. In this perspective, we propose that CFTR therapeutics, which are safe and generally well-tolerated, may provide benefit to COVID-19 patients. Although CFTR therapeutics are currently only approved for treating cystic fibrosis, there are efforts to repurpose them for conditions with "acquired" CFTR dysfunction, for example, chronic obstructive pulmonary disease. In addition to targeting the primary lung pathology, CFTR therapeutics may possess value-added effects: their anti-inflammatory properties may dampen exaggerated immune cell responses and promote cerebrovascular dilation; the latter aspect may offer some protection against COVID-19 related stroke.

SUBMITTER: Lidington D 

PROVIDER: S-EPMC7672116 | biostudies-literature | 2020

REPOSITORIES: biostudies-literature

altmetric image

Publications

A Scientific Rationale for Using Cystic Fibrosis Transmembrane Conductance Regulator Therapeutics in COVID-19 Patients.

Lidington Darcy D   Bolz Steffen-Sebastian SS  

Frontiers in physiology 20201104


Several pathological manifestations in coronavirus disease 2019 (COVID-19), including thick mucus, poor mucociliary clearance, and bronchial wall thickening, overlap with cystic fibrosis disease patterns and may be indicative of "acquired" cystic fibrosis transmembrane conductance regulator (CFTR) dysfunction. Indeed, tumor necrosis factor (TNF), a key cytokine driving COVID-19 pathogenesis, downregulates lung CFTR protein expression, providing a strong rationale that acquired CFTR dysfunction a  ...[more]

Similar Datasets

2006-03-24 | GSE4513 | GEO
| S-EPMC3552343 | biostudies-literature
| S-EPMC5036583 | biostudies-literature
| S-EPMC6822231 | biostudies-literature
| S-EPMC8576290 | biostudies-literature
| S-EPMC6993798 | biostudies-literature
| S-EPMC3733473 | biostudies-literature
| S-EPMC5463557 | biostudies-literature
| S-EPMC3705602 | biostudies-literature
| S-EPMC6244248 | biostudies-literature