Unknown

Dataset Information

0

Alignment and quantification of ChIP-exo crosslinking patterns reveal the spatial organization of protein-DNA complexes.


ABSTRACT: The ChIP-exo assay precisely delineates protein-DNA crosslinking patterns by combining chromatin immunoprecipitation with 5' to 3' exonuclease digestion. Within a regulatory complex, the physical distance of a regulatory protein to DNA affects crosslinking efficiencies. Therefore, the spatial organization of a protein-DNA complex could potentially be inferred by analyzing how crosslinking signatures vary between its subunits. Here, we present a computational framework that aligns ChIP-exo crosslinking patterns from multiple proteins across a set of coordinately bound regulatory regions, and which detects and quantifies protein-DNA crosslinking events within the aligned profiles. By producing consistent measurements of protein-DNA crosslinking strengths across multiple proteins, our approach enables characterization of relative spatial organization within a regulatory complex. Applying our approach to collections of ChIP-exo data, we demonstrate that it can recover aspects of regulatory complex spatial organization at yeast ribosomal protein genes and yeast tRNA genes. We also demonstrate the ability to quantify changes in protein-DNA complex organization across conditions by applying our approach to analyze Drosophila Pol II transcriptional components. Our results suggest that principled analyses of ChIP-exo crosslinking patterns enable inference of spatial organization within protein-DNA complexes.

SUBMITTER: Yamada N 

PROVIDER: S-EPMC7672471 | biostudies-literature | 2020 Nov

REPOSITORIES: biostudies-literature

altmetric image

Publications

Alignment and quantification of ChIP-exo crosslinking patterns reveal the spatial organization of protein-DNA complexes.

Yamada Naomi N   Rossi Matthew J MJ   Farrell Nina N   Pugh B Franklin BF   Mahony Shaun S  

Nucleic acids research 20201101 20


The ChIP-exo assay precisely delineates protein-DNA crosslinking patterns by combining chromatin immunoprecipitation with 5' to 3' exonuclease digestion. Within a regulatory complex, the physical distance of a regulatory protein to DNA affects crosslinking efficiencies. Therefore, the spatial organization of a protein-DNA complex could potentially be inferred by analyzing how crosslinking signatures vary between its subunits. Here, we present a computational framework that aligns ChIP-exo crossl  ...[more]

Similar Datasets

2019-12-08 | GSE140923 | GEO
| PRJNA591557 | ENA
| S-EPMC10935504 | biostudies-literature
| S-EPMC6054642 | biostudies-literature
| S-EPMC6620017 | biostudies-literature
2021-01-13 | GSE54403 | GEO
| S-EPMC4227761 | biostudies-literature
| S-EPMC3989762 | biostudies-literature
| S-EPMC7200897 | biostudies-literature
2021-12-06 | E-MTAB-9060 | biostudies-arrayexpress