Unknown

Dataset Information

0

The nonlesional skin surface distinguishes atopic dermatitis with food allergy as a unique endotype.


ABSTRACT: Skin barrier dysfunction has been reported in both atopic dermatitis (AD) and food allergy (FA). However, only one-third of patients with AD have FA. The purpose of this study was to use a minimally invasive skin tape strip sampling method and a multiomics approach to determine whether children with AD and FA (AD FA+) have stratum corneum (SC) abnormalities that distinguish them from AD without FA (AD FA-) and nonatopic (NA) controls. Transepidermal water loss was found to be increased in AD FA+. Filaggrin and the proportion of ?-hydroxy fatty acid sphingosine ceramide content in nonlesional skin of children with AD FA+ were substantially lower than in AD FA- and NA skin. These abnormalities correlated with morphologic changes in epidermal lamellar bilayer architecture responsible for barrier homeostasis. Shotgun metagenomic studies revealed that the nonlesional skin of AD FA+ had increased abundance of Staphylococcus aureus compared to NA. Increased expression of keratins 5, 14, and 16 indicative of hyperproliferative keratinocytes was observed in the SC of AD FA+. The skin transcriptome of AD FA+ had increased gene expression for dendritic cells and type 2 immune pathways. A network analysis revealed keratins 5, 14, and 16 were positively correlated with AD FA+, whereas filaggrin breakdown products were negatively correlated with AD FA+. These data suggest that the most superficial compartment of nonlesional skin in AD FA+ has unique properties associated with an immature skin barrier and type 2 immune activation.

SUBMITTER: Leung DYM 

PROVIDER: S-EPMC7676854 | biostudies-literature | 2019 Feb

REPOSITORIES: biostudies-literature

altmetric image

Publications


Skin barrier dysfunction has been reported in both atopic dermatitis (AD) and food allergy (FA). However, only one-third of patients with AD have FA. The purpose of this study was to use a minimally invasive skin tape strip sampling method and a multiomics approach to determine whether children with AD and FA (AD <i>FA</i>+) have stratum corneum (SC) abnormalities that distinguish them from AD without FA (AD <i>FA</i>-) and nonatopic (NA) controls. Transepidermal water loss was found to be incre  ...[more]

Similar Datasets

| S-EPMC7772264 | biostudies-literature
| S-EPMC11344220 | biostudies-literature
| S-EPMC9285647 | biostudies-literature
| S-EPMC3128983 | biostudies-literature
| S-EPMC6267189 | biostudies-literature
2006-10-01 | GSE5667 | GEO
2019-11-13 | GSE140227 | GEO
| S-EPMC8156695 | biostudies-literature
2024-08-22 | PXD050245 | Pride
| S-EPMC5892844 | biostudies-literature