Ontology highlight
ABSTRACT: Objective
The aim of this study is to assess the performance of deep learning convolutional neural networks (CNNs) in segmenting gadolinium-enhancing lesions using a large cohort of multiple sclerosis (MS) patients.Methods
A three-dimensional (3D) CNN model was trained for segmentation of gadolinium-enhancing lesions using multispectral magnetic resonance imaging data (MRI) from 1006 relapsing-remitting MS patients. The network performance was evaluated for three combinations of multispectral MRI used as input: (U5) fluid-attenuated inversion recovery (FLAIR), T2-weighted, proton density-weighted, and pre- and post-contrast T1-weighted images; (U2) pre- and post-contrast T1-weighted images; and (U1) only post-contrast T1-weighted images. Segmentation performance was evaluated using the Dice similarity coefficient (DSC) and lesion-wise true-positive (TPR) and false-positive (FPR) rates. Performance was also evaluated as a function of enhancing lesion volume.Results
The DSC/TPR/FPR values averaged over all the enhancing lesion sizes were 0.77/0.90/0.23 using the U5 model. These values for the largest enhancement volumes (>500 mm3) were 0.81/0.97/0.04. For U2, the average DSC/TPR/FPR values were 0.72/0.86/0.31. Comparable performance was observed with U1. For all types of input, the network performance degraded with decreased enhancement size.Conclusion
Excellent segmentation of enhancing lesions was observed for enhancement volume ⩾70 mm3. The best performance was achieved when the input included all five multispectral image sets.
SUBMITTER: Coronado I
PROVIDER: S-EPMC7680286 | biostudies-literature |
REPOSITORIES: biostudies-literature