Ontology highlight
ABSTRACT:
SUBMITTER: Greselin M
PROVIDER: S-EPMC11351944 | biostudies-literature | 2024 Aug
REPOSITORIES: biostudies-literature
Greselin Martina M Lu Po-Jui PJ Melie-Garcia Lester L Ocampo-Pineda Mario M Galbusera Riccardo R Cagol Alessandro A Weigel Matthias M de Oliveira Siebenborn Nina N Ruberte Esther E Benkert Pascal P Müller Stefanie S Finkener Sebastian S Vehoff Jochen J Disanto Giulio G Findling Oliver O Chan Andrew A Salmen Anke A Pot Caroline C Bridel Claire C Zecca Chiara C Derfuss Tobias T Lieb Johanna M JM Diepers Michael M Wagner Franca F Vargas Maria I MI Pasquier Renaud Du RD Lalive Patrice H PH Pravatà Emanuele E Weber Johannes J Gobbi Claudio C Leppert David D Kim Olaf Chan-Hi OC Cattin Philippe C PC Hoepner Robert R Roth Patrick P Kappos Ludwig L Kuhle Jens J Granziera Cristina C
Bioengineering (Basel, Switzerland) 20240822 8
The detection of contrast-enhancing lesions (CELs) is fundamental for the diagnosis and monitoring of patients with multiple sclerosis (MS). This task is time-consuming and suffers from high intra- and inter-rater variability in clinical practice. However, only a few studies proposed automatic approaches for CEL detection. This study aimed to develop a deep learning model that automatically detects and segments CELs in clinical Magnetic Resonance Imaging (MRI) scans. A 3D UNet-based network was ...[more]