Unknown

Dataset Information

0

Epidermal Growth Factor Receptor Inhibition Reverses Cellular and Transcriptomic Alterations Induced by Hypoxia in the Neonatal Piglet Brain.


ABSTRACT: Acute hypoxia (HX) causes extensive cellular damage in the developing human cerebral cortex. We found increased expression of activated-EGFR in affected cortical areas of neonates with HX and investigated its functional role in the piglet, which displays a highly evolved, gyrencephalic brain, with a human-like maturation pattern. In the piglet, HX-induced activation of EGFR and Ca2+/calmodulin kinase IV (CaMKIV) caused cell death and pathological alterations in neurons and glia. EGFR blockade inhibited CaMKIV activation, attenuated neuronal loss, increased oligodendrocyte proliferation, and reversed HX-induced astrogliosis. We performed for the first time high-throughput transcriptomic analysis of the piglet cortex to define molecular responses to HX and to uncover genes specifically involved in EGFR signaling in piglet and human brain injury. Our results indicate that specific molecular responses modulated by EGFR may be targeted as a therapeutic strategy for HX injury in the neonatal brain.

SUBMITTER: Kratimenos P 

PROVIDER: S-EPMC7683340 | biostudies-literature | 2020 Dec

REPOSITORIES: biostudies-literature

altmetric image

Publications

Epidermal Growth Factor Receptor Inhibition Reverses Cellular and Transcriptomic Alterations Induced by Hypoxia in the Neonatal Piglet Brain.

Kratimenos Panagiotis P   Goldstein Evan Z EZ   Koutroulis Ioannis I   Knoblach Susan S   Jablonska Beata B   Banerjee Payal P   Malaeb Shadi N SN   Bhattacharya Surajit S   Almira-Suarez M Isabel MI   Gallo Vittorio V   Delivoria-Papadopoulos Maria M  

iScience 20201104 12


Acute hypoxia (HX) causes extensive cellular damage in the developing human cerebral cortex. We found increased expression of activated-EGFR in affected cortical areas of neonates with HX and investigated its functional role in the piglet, which displays a highly evolved, gyrencephalic brain, with a human-like maturation pattern. In the piglet, HX-induced activation of EGFR and Ca<sup>2+</sup>/calmodulin kinase IV (CaMKIV) caused cell death and pathological alterations in neurons and glia. EGFR  ...[more]

Similar Datasets

| S-EPMC6504832 | biostudies-literature
| S-EPMC8035433 | biostudies-literature
| S-EPMC8391411 | biostudies-literature
| S-EPMC4508213 | biostudies-literature
| S-EPMC6684740 | biostudies-literature
| S-EPMC6411734 | biostudies-literature
| S-EPMC6770959 | biostudies-literature
| S-EPMC3737398 | biostudies-literature
| S-EPMC2730834 | biostudies-literature
| S-EPMC5271335 | biostudies-literature