Ontology highlight
ABSTRACT:
Methods: TRIM3 protein levels were measured by western blot, while the P53 classical target genes were measured by real-time PCR. WST1 assay were used to measure cell proliferation, while cleaved caspase-3 was used to detect cell apoptosis. Protein stability and ubiquitin assay were used to detect the P53 protein ubiquitin and stability. The immuno-precipitation assays were used to detect the protein interactions. Immuno-staining was used to detect the protein localization of P53 and TRIM3, while the ubiquitin-based immuno-precipitation assays were used to detect the specific ubiquitination manner of P53.
Results: In our study, we identified TRIM3 as an endogenous inhibitor for P53 signaling. TRIM3 depletion inhibited breast cancer cell proliferation and promoted apoptosis. In addition, TRIM3 depletion increased P53 protein level in breast cancer cell. Further investigation showed that TRIM3 could associate with P53 and promote P53 K48-linked ubiquitination and degradation.
Conclusion: Our study identified a novel post-translational modification mechanism between TRIM3 and P53. TRIM3 depletion or blockage could be a promising strategy to rescue P53 signaling and inhibit breast cancer progression.
SUBMITTER: Wang X
PROVIDER: S-EPMC7685606 | biostudies-literature | 2020 Nov
REPOSITORIES: biostudies-literature
Wang Xinxing X Zhang Yujie Y Pei Xinhong X Guo Guangcheng G Xue Bingjian B Duan Xin X Dou Dongwei D
Cancer cell international 20201123 1
<h4>Background</h4>Beast cancer is the most common women cancer worldwide, while two third of them are ER alpha positive breast cancer. Among the ER alpha positive breast cancer, about 80% are P53 wild type, indicating the potential tumor suppression role in ER alpha positive breast cancer. Since P53 is an important safeguard to inhibit cell malignant transformation, reactivating P53 signaling could a plausible approach to treat breast cancer.<h4>Methods</h4>TRIM3 protein levels were measured by ...[more]