Decomposing implicit associations about life and death improves our understanding of suicidal behavior.
Ontology highlight
ABSTRACT: The Death/Suicide Implicit Association Test (IAT) is effective at detecting and prospectively predicting suicidal thoughts and behaviors. However, traditional IAT scoring procedures used in all prior studies (i.e., D-scores) provide an aggregate score that is inherently relative, obfuscating the separate associations (i.e., "Me = Death/Suicide," "Me = Life") that might be most relevant for understanding suicide-related implicit cognition. Here, we decompose the D-scores and validate a new analytic technique called the Decomposed D-scores ("DD-scores") that creates separate scores for each category ("Me," "Not Me") in the IAT. Across large online volunteer samples (N > 12,000), results consistently showed that a weakened association between "Me = Life" is more strongly predictive of having a history of suicidal attempts than is a stronger association between "Me = Death/Suicide." These findings replicated across three different versions of the IAT and were observed when calculated using both reaction times and error rates. However, among those who previously attempted suicide, a strengthened association between "Me = Death" is more strongly predictive of the recency of a suicide attempt. These results suggest that decomposing traditional IAT D-scores can offer new insights into the mental associations that may underlie clinical phenomena and may help to improve the prediction, and ultimately the prevention, of these clinical outcomes.
SUBMITTER: O'Shea BA
PROVIDER: S-EPMC7689854 | biostudies-literature | 2020 Oct
REPOSITORIES: biostudies-literature
ACCESS DATA