Long non-coding maternally expressed gene 3 regulates cigarette smoke extract-induced apoptosis, inflammation and cytotoxicity by sponging miR-181a-2-3p in 16HBE cells.
Ontology highlight
ABSTRACT: Accumulating evidence has suggested that long non-coding (lnc)RNAs are widely involved in the progression of multiple diseases, including chronic obstructive pulmonary disease (COPD). The aim of the present study was to explore the function and molecule mechanism of maternally expressed gene 3 (MEG3) in cigarette smoke extract (CSE)-treated 16HBE cells. Cell viability and apoptosis were evaluated using Cell Counting Kit-8 analysis and flow cytometry, respectively. Western blot analysis was carried out to determine the protein levels of Bcl-2, Bax and cleaved caspase-3. ELISA assays were utilized to measure the protein levels of IL-1? and IL-6 and TNF-?. Cytotoxicity was assessed using a lactate dehydrogenase release assay. The expression levels of MEG3 and microRNA (miR)-181a-2-3p were detected using reverse transcription-quantitative PCR. The interaction between miR-181a-2-3p and MEG3 was predicted using DIANA tools and verified by a dual-luciferase reporter assay and RNA Immunoprecipitation assay. MEG3 expression was enhanced while miR-181a-2-3p abundance was reduced in the serum of patients with COPD and CSE-treated 16HBE cells. MEG3-knockdown or miR-181a-2-3p-overexpression inhibited CSE-induced apoptosis, inflammation and cytotoxicity in 16HBE cells. Moreover, miR-181a-2-3p directly bind to MEG3 and its knockdown reversed the inhibitory effect of MEG3 interference on apoptosis, inflammation and cytotoxicity in CSE-treated 16HBE cells. Overall, MEG3-knockdown suppressed CSE-induced apoptosis, inflammation and cytotoxicity in 16HBE cells by upregulating miR-181a-2-3p, providing a promising therapeutic target for treatment of CSE-induced COPD.
SUBMITTER: Fan S
PROVIDER: S-EPMC7693283 | biostudies-literature | 2021 Jan
REPOSITORIES: biostudies-literature
ACCESS DATA