Ontology highlight
ABSTRACT:
SUBMITTER: Li W
PROVIDER: S-EPMC7695723 | biostudies-literature | 2020 Nov
REPOSITORIES: biostudies-literature
Li Wen W Newitt David C DC Gibbs Jessica J Wilmes Lisa J LJ Jones Ella F EF Arasu Vignesh A VA Strand Fredrik F Onishi Natsuko N Nguyen Alex Anh-Tu AA Kornak John J Joe Bonnie N BN Price Elissa R ER Ojeda-Fournier Haydee H Eghtedari Mohammad M Zamora Kathryn W KW Woodard Stefanie A SA Umphrey Heidi H Bernreuter Wanda W Nelson Michael M Church An Ly AL Bolan Patrick P Kuritza Theresa T Ward Kathleen K Morley Kevin K Wolverton Dulcy D Fountain Kelly K Lopez-Paniagua Dan D Hardesty Lara L Brandt Kathy K McDonald Elizabeth S ES Rosen Mark M Kontos Despina D Abe Hiroyuki H Sheth Deepa D Crane Erin P EP Dillis Charlotte C Sheth Pulin P Hovanessian-Larsen Linda L Bang Dae Hee DH Porter Bruce B Oh Karen Y KY Jafarian Neda N Tudorica Alina A Niell Bethany L BL Drukteinis Jennifer J Newell Mary S MS Cohen Michael A MA Giurescu Marina M Berman Elise E Lehman Constance C Partridge Savannah C SC Fitzpatrick Kimberly A KA Borders Marisa H MH Yang Wei T WT Dogan Basak B Goudreau Sally S Chenevert Thomas T Yau Christina C DeMichele Angela A Berry Don D Esserman Laura J LJ Hylton Nola M NM
NPJ breast cancer 20201127 1
Dynamic contrast-enhanced (DCE) MRI provides both morphological and functional information regarding breast tumor response to neoadjuvant chemotherapy (NAC). The purpose of this retrospective study is to test if prediction models combining multiple MRI features outperform models with single features. Four features were quantitatively calculated in each MRI exam: functional tumor volume, longest diameter, sphericity, and contralateral background parenchymal enhancement. Logistic regression analys ...[more]