Project description:Coronavirus disease 2019 (COVID-19) is an infectious disease caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), which led to the current pandemic. Many factors, including age and comorbidities, influence the severity and mortality of COVID-19. SARS-CoV-2 infection can cause pulmonary vascular dysfunction. The COVID-19 case-fatality rate in patients with pulmonary arterial hypertension (PAH) is higher in comparison with the general population. In this study, we aimed to identify pathobiological processes common to COVID-19 and PAH by utilizing the human protein-protein interactome and whole-genome transcription data from peripheral blood mononuclear cells (PBMCs) and from lung tissue. We found that there are significantly more interactions between SARS-CoV-2 targets and PAH disease proteins than expected by chance, suggesting that the PAH disease module is in the neighborhood of SARS-CoV-2 targets in the human interactome. In addition, SARS-CoV-2 infection-induced changes in gene expression significantly overlap with PAH-induced gene expression changes in both tissues, indicating SARS-CoV-2 and PAH may share common transcriptional regulators. We identified many upregulated genes and downregulated genes common to COVID-19 and PAH. Interestingly, we observed different co-regulation patterns and dysfunctional signaling pathways in PBMCs versus lung tissue. Endophenotype enrichment analysis revealed that genes regulating fibrosis, inflammation, hypoxia, oxidative stress, immune response, and thromboembolism are significantly enriched in the COVID-19-PAH co-expression modules. We examined the network proximity of the targets of repositioned drugs for COVID-19 to the co-expression modules in PBMCs and lung tissue, and identified 42 drugs that can be potentially used for COVID-19 patients with PAH as a comorbidity. The uncovered common pathobiological pathways are crucial for discovering therapeutic targets and designing tailored treatments for COVID-19 patients who also have PAH.
Project description:Pulmonary arterial hypertension (PAH) is a historically neglected and highly morbid vascular disease that leads to right heart failure and, in some cases, death. The molecular origins of this disease have been poorly defined, and as such, current pulmonary vasodilator therapies do not cure or reverse this disease. Although extracellular matrix (ECM) remodeling and pulmonary arterial stiffening have long been associated with end-stage PAH, recent studies have reported that such vascular stiffening can occur early in pathogenesis. Furthermore, there is emerging evidence that ECM stiffening may represent a key first step in pathogenic reprogramming and molecular crosstalk among endothelial, smooth muscle, and fibroblast cells in the remodeled pulmonary vessel. Such processes represent the convergence of activation of a number of specific mechanoactivated signaling pathways, microRNAs, and metabolic pathways in pulmonary vasculature. In this review, we summarize the contemporary understanding of vascular stiffening as a driver of PAH, its mechanisms, potential therapeutic targets and clinical perspectives. Of note, early intervention targeting arterial stiffness may break the vicious cycle of PAH progression, leading to outcome improvement which has not been demonstrated by current vasodilator therapy.
Project description:The long-term prognosis for patients with pulmonary arterial hypertension (PAH) remains poor, despite advances in treatment options that have been made in the past few decades. Recent evidence suggests that World Health Organization functional class I or II patients have significantly better long-term survival rates than patients in higher functional classes, thus providing a rationale for earlier diagnosis and treatment of PAH. However, early diagnosis is challenging and there is frequently a delay between symptom onset and diagnosis. Screening programmes play an important role in PAH detection and expert opinion favours echocardiographic screening of asymptomatic patients who may be predisposed to the development of PAH (i.e. those with systemic sclerosis or sickle cell disease), although current guidelines only recommend annual echocardiographic screening in symptomatic patients. This article reviews the currently available screening programmes, including their limitations, and describes alternative screening approaches that may identify more effectively those patients who require right heart catheterisation for a definitive PAH diagnosis.
Project description:The COVID-19 pandemic has impacted healthcare systems worldwide. Little is known about the impact of the pandemic on medical and psycho-social aspects of children with rare diseases such as pulmonary arterial hypertension and their parents. The study is based on children registered in The Database of Pulmonary Hypertension in the Polish Population and a parent-reported survey deployed during the first 6 months of the pandemic. The questionnaire consisted of six question panels: demographic data, fear of COVID-19, General Anxiety Disorder-7 (GAD-7), social impact of pandemic, patients' medical status, and alarming symptoms (appearance or exacerbation). Out of 80 children registered, we collected 58 responses (72.5% response rate). Responders (parents) were mostly female (n = 55; 94.8%) at a mean age of 40.6 ± 6.9 years. Patients (children) were both females (n = 32; 55%) and males with a mean age of 10.0 ± 5.1 years. Eleven (19%) children had symptoms of potential disease exacerbation. Eight parents (72.7%) decided for watchful waiting while others contacted their GPs or cardiologists (n = 6; 54.5%). Three children had to be hospitalized (27.3%). Most planned hospitalizations (27/48; 56.2%) and out-patient visits (20/35; 57.1%) were cancelled, delayed, or substituted by telehealth services. Among the participating parents, the study shows very high levels of anxiety (n = 20; 34.5%) and concern (n = 55; 94.8%) and the need for detailed information (52; 89.6%) regarding COVID-19 and medical service preparedness during the pandemic. The COVID-19 pandemic has influenced child healthcare and caused high levels of anxiety among parents.
Project description:Although multiple gene and protein expression have been extensively profiled in human pulmonary arterial hypertension (PAH), the mechanism for the development and progression of pulmonary hypertension remains elusive. Analysis of the global metabolomic heterogeneity within the pulmonary vascular system leads to a better understanding of disease progression. Using a combination of high-throughput liquid-and-gas-chromatography-based mass spectrometry, we showed unbiased metabolomic profiles of disrupted glycolysis, increased TCA cycle, and fatty acid metabolites with altered oxidation pathways in the severe human PAH lung. The results suggest that PAH has specific metabolic pathways contributing to increased ATP synthesis for the vascular remodeling process in severe pulmonary hypertension. These identified metabolites may serve as potential biomarkers for the diagnosis of severe PAH. By profiling metabolomic alterations of the PAH lung, we reveal new pathogenic mechanisms of PAH in its later stage, which may differ from the earlier stage of PAH, opening an avenue of exploration for therapeutics that target metabolic pathway alterations in the progression of PAH. Global profiles were determined in human lung tissue and compared across 11 normal and 12 severe pulmonary arterial hypertension patients. Using a combination of microarray and high-throughput liquid-and-gas-chromatography-based mass spectrometry, we showed unbiased metabolomic profiles of disrupted glycolysis, increased TCA cycle, and fatty acid metabolites with altered oxidation pathways in the severe human PAH lung.
Project description:Arterial pulmonary hypertension is a rare disease, with little knowledge regarding its etiology, and high mortality. Development of right and later on also left ventricular heart insufficiency, secondary to pulmonary hypertension, is a negative predictive factor. Genetic and molecular processes underlying left heart ventricle remodeling over the course of pulmonary hypertension remain unknown. In particular, there is no knowledge regarding the mechanisms of left heart ventricle atrophy which was completely avoided by researchers until recently.The aim of this study was to assess changes in protein abundance in left and right heart ventricle free wall of rats in monocrotaline model of PAH.
Project description:Endothelial cell (EC) dysfunction plays a key role in the pathogenesis of pulmonary arterial hypertension (PAH). To avoid cell cultures and whole lung tissue samples, we have, for the first time, used CD31 antibody coated magnetic beads in conjunction with genome scale RNA expression microarrays to profile ECs in vivo at any stage of PAH. We hypothesized that targeting early stages of the disease would identify novel mediators of PAH and genes linked to bone morphogenetic protein receptor 2 (BMPR2) signaling. Rats were treated with either monocrotaline (60mg/kg) or saline as control with 4 animals in each experimental group. Gene expression profiling was performed on primary pulmonary endothelial cells directly after isolation from whole lung tissue 5 days after treatment.
Project description:NFU1 deficiency is a rare metabolic disorder affecting iron-sulfur cluster synthesis, an essential pathway for lipoic acid-dependent enzymatic activities and mitochondrial respiratory chain complexes. It is a little-known cause of pulmonary arterial hypertension (PAH), while PAH is a prominent feature of the disease. We herein report on a female infant diagnosed as having idiopathic PAH since 1 month of age, who did not respond to bosentan plus sildenafil. NFU1 deficiency was only suggested and confirmed at 10 months of age when she demonstrated neurological deterioration along with high glycine levels in body fluids. Unexplained PAH in early infancy should prompt clinicians to perform amino acid chromatography searching for high glycine levels. Early recognition will avoid further invasive procedures and enable appropriate genetic counseling to be offered. No effective treatment is currently able to prevent the fatal course of this metabolic condition.