Unknown

Dataset Information

0

Dynamically Masked Audiograms With Machine Learning Audiometry.


ABSTRACT:

Objectives

When one ear of an individual can hear significantly better than the other ear, evaluating the worse ear with loud probe tones may require delivering masking noise to the better ear to prevent the probe tones from inadvertently being heard by the better ear. Current masking protocols are confusing, laborious, and time consuming. Adding a standardized masking protocol to an active machine learning audiogram procedure could potentially alleviate all of these drawbacks by dynamically adapting the masking as needed for each individual. The goal of this study is to determine the accuracy and efficiency of automated machine learning masking for obtaining true hearing thresholds.

Design

Dynamically masked automated audiograms were collected for 29 participants between the ages of 21 and 83 (mean 43, SD 20) with a wide range of hearing abilities. Normal-hearing listeners were given unmasked and masked machine learning audiogram tests. Listeners with hearing loss were given a standard audiogram test by an audiologist, with masking stimuli added as clinically determined, followed by a masked machine learning audiogram test. The hearing thresholds estimated for each pair of techniques were compared at standard audiogram frequencies (i.e., 0.25, 0.5, 1, 2, 4, 8 kHz).

Results

Masked and unmasked machine learning audiogram threshold estimates matched each other well in normal-hearing listeners, with a mean absolute difference between threshold estimates of 3.4 dB. Masked machine learning audiogram thresholds also matched well the thresholds determined by a conventional masking procedure, with a mean absolute difference between threshold estimates for listeners with low asymmetry and high asymmetry between the ears, respectively, of 4.9 and 2.6 dB. Notably, out of 6200 masked machine learning audiogram tone deliveries for this study, no instances of tones detected by the nontest ear were documented. The machine learning methods were also generally faster than the manual methods, and for some listeners, substantially so.

Conclusions

Dynamically masked audiograms achieve accurate true threshold estimates and reduce test time compared with current clinical masking procedures. Dynamic masking is a compelling alternative to the methods currently used to evaluate individuals with highly asymmetric hearing, yet can also be used effectively and efficiently for anyone.

SUBMITTER: Heisey KL 

PROVIDER: S-EPMC7725866 | biostudies-literature |

REPOSITORIES: biostudies-literature

Similar Datasets

| S-EPMC8639874 | biostudies-literature
| S-EPMC8299699 | biostudies-literature
| S-EPMC4819485 | biostudies-literature
2013-01-01 | E-GEOD-29210 | biostudies-arrayexpress
| S-EPMC6403242 | biostudies-other
| S-EPMC10134160 | biostudies-literature
2022-10-01 | GSE200096 | GEO
2023-06-01 | GSE193400 | GEO
2024-08-25 | PXD044852 | JPOST Repository
2020-09-01 | E-MTAB-9501 | biostudies-arrayexpress