Aluminum Plasmonics Enriched Ultraviolet GaN Photodetector with Ultrahigh Responsivity, Detectivity, and Broad Bandwidth.
Ontology highlight
ABSTRACT: Plasmonics have been well investigated on photodetectors, particularly in IR and visible regimes. However, for a wide range of ultraviolet (UV) applications, plasmonics remain unavailable mainly because of the constrained optical properties of applicable plasmonic materials in the UV regime. Therefore, an epitaxial single-crystalline aluminum (Al) film, an abundant metal with high plasma frequency and low intrinsic loss is fabricated, on a wide bandgap semiconductive gallium nitride (GaN) to form a UV photodetector. By deliberately designing a periodic nanohole array in this Al film, localized surface plasmon resonance and extraordinary transmission are enabled; hence, the maximum responsivity (670 A W-1) and highest detectivity (1.48 × 1015 cm Hz1/2 W-1) is obtained at the resonance wavelength of 355 nm. In addition, owing to coupling among nanoholes, the bandwidth expands substantially, encompassing the entire UV range. Finally, a Schottky contact is formed between the single-crystalline Al nanohole array and the GaN substrate, resulting in a fast temporal response with a rise time of 51 ms and a fall time of 197 ms. To the best knowledge, the presented detectivity is the highest compared with those of other reported GaN photodetectors.
SUBMITTER: Dubey A
PROVIDER: S-EPMC7740085 | biostudies-literature | 2020 Dec
REPOSITORIES: biostudies-literature
ACCESS DATA