Ontology highlight
ABSTRACT: Summary
statistics from a meta-analysis of genome-wide association studies (meta-GWAS) can be used for many follow-up analyses. One valuable application is the creation of polygenic scores. However, if polygenic scores are calculated in a validation cohort that was part of the meta-GWAS consortium, this cohort is not independent and analyses will therefore yield inflated results. The R package 'MetaSubtract' was developed to subtract the results of the validation cohort from meta-GWAS summary statistics analytically. The statistical formulas for a meta-analysis were inverted to compute corrected summary statistics of a meta-GWAS leaving one (or more) cohort(s) out. These formulas have been implemented in MetaSubtract for different meta-analyses methods (fixed effects inverse variance or square root sample size weighted z-score) accounting for no, single or double genomic control correction. Results obtained by MetaSubtract correlate very well to those calculated using the traditional way, i.e. by performing a meta-analysis leaving out the validation cohort. In conclusion, MetaSubtract allows researchers to compute meta-GWAS summary statistics that are independent of the GWAS results of the validation cohort without requiring access to the cohort level GWAS results of the corresponding meta-GWAS consortium.Availability and implementation
https://cran.r-project.org/web/packages/MetaSubtract.Supplementary information
Supplementary data are available at Bioinformatics online.
SUBMITTER: Nolte IM
PROVIDER: S-EPMC7750933 | biostudies-literature | 2020 Aug
REPOSITORIES: biostudies-literature
Bioinformatics (Oxford, England) 20200801 16
<h4>Summary</h4>statistics from a meta-analysis of genome-wide association studies (meta-GWAS) can be used for many follow-up analyses. One valuable application is the creation of polygenic scores. However, if polygenic scores are calculated in a validation cohort that was part of the meta-GWAS consortium, this cohort is not independent and analyses will therefore yield inflated results. The R package 'MetaSubtract' was developed to subtract the results of the validation cohort from meta-GWAS su ...[more]