Project description:Nitric oxide (NO) is an important signaling molecule between cells which has been shown to have an inhibitory effect on some virus infections. The purpose of this study was to examine whether NO inhibits the replication cycle of the severe acute respiratory syndrome coronavirus (SARS CoV) in vitro. We found that an organic NO donor, S-nitroso-N-acetylpenicillamine, significantly inhibited the replication cycle of SARS CoV in a concentration-dependent manner. We also show here that NO inhibits viral protein and RNA synthesis. Furthermore, we demonstrate that NO generated by inducible nitric oxide synthase, an enzyme that produces NO, inhibits the SARS CoV replication cycle.
Project description:The ongoing COVID-19 pandemic continues to pose a need for new and efficient therapeutic strategies. We explored antisense therapy using oligonucleotides targeting the severe acute respiratory syndrome coronavirus (SARS-CoV-2) genome. We predicted in silico four antisense oligonucleotides (ASO gapmers with 100% PTO linkages and LNA modifications at their 5' and 3'ends) targeting viral regions ORF1a, ORF1b, N and the 5'UTR of the SARS-CoV-2 genome. Efficiency of ASOs was tested by transfection in human ACE2-expressing HEK-293T cells and monkey VeroE6/TMPRSS2 cells infected with SARS-CoV-2. The ORF1b-targeting ASO was the most efficient, with a 71% reduction in the number of viral genome copies. N- and 5'UTR-targeting ASOs also significantly reduced viral replication by 55 and 63%, respectively, compared to non-related control ASO (ASO-C). Viral titration revealed a significant decrease in SARS-CoV-2 multiplication both in culture media and in cells. These results show that anti-ORF1b ASO can specifically reduce SARS-CoV-2 genome replication in vitro in two different cell infection models. The present study presents proof-of concept of antisense oligonucleotide technology as a promising therapeutic strategy for COVID-19.
Project description:The sudden emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) at the end of 2019 from the Chinese province of Hubei and its subsequent pandemic spread highlight the importance of understanding the full molecular details of coronavirus infection and pathogenesis. Here, we compared a variety of replication features of SARS-CoV-2 and SARS-CoV and analysed the cytopathology caused by the two closely related viruses in the commonly used Vero E6 cell line. Compared to SARS-CoV, SARS-CoV-2 generated higher levels of intracellular viral RNA, but strikingly about 50-fold less infectious viral progeny was recovered from the culture medium. Immunofluorescence microscopy of SARS-CoV-2-infected cells established extensive cross-reactivity of antisera previously raised against a variety of non-structural proteins, membrane and nucleocapsid protein of SARS-CoV. Electron microscopy revealed that the ultrastructural changes induced by the two SARS viruses are very similar and occur within comparable time frames after infection. Furthermore, we determined that the sensitivity of the two viruses to three established inhibitors of coronavirus replication (remdesivir, alisporivir and chloroquine) is very similar, but that SARS-CoV-2 infection was substantially more sensitive to pre-treatment of cells with pegylated interferon alpha. An important difference between the two viruses is the fact that - upon passaging in Vero E6 cells - SARS-CoV-2 apparently is under strong selection pressure to acquire adaptive mutations in its spike protein gene. These mutations change or delete a putative furin-like cleavage site in the region connecting the S1 and S2 domains and result in a very prominent phenotypic change in plaque assays.
Project description:Repurposing clinically available drugs to treat the new coronavirus disease 2019 (COVID-19) is an urgent need in the course of the Severe Acute Respiratory Syndrome coronavirus (SARS-CoV-2) pandemic, as very few treatment options are available. The iminosugar Miglustat is a well-characterized drug for the treatment of rare genetic lysosome storage diseases, such as Gaucher and Niemann-Pick type C, and has also been described to be active against a variety of enveloped viruses. The activity of Miglustat is here demonstrated in the micromolar range for SARS-CoV-2 in vitro. The drug acts at the post-entry level and leads to a marked decrease of viral proteins and release of infectious viruses. The mechanism resides in the inhibitory activity toward α-glucosidases that are involved in the early stages of glycoprotein N-linked oligosaccharide processing in the endoplasmic reticulum, leading to a marked decrease of the viral Spike protein. Indeed, the antiviral potential of protein glycosylation inhibitors against SARS-CoV-2 is further highlighted by the low-micromolar activity of the investigational drug Celgosivir. These data point to a relevant role of this approach for the treatment of COVID-19.
Project description:Severe acute respiratory syndrome virus 2 (SARS-CoV-2) is the cause of the current coronavirus disease 19 (COVID-19) pandemic. Protease inhibitors are under consideration as virus entry inhibitors that prevent the cleavage of the coronavirus spike (S) protein by cellular proteases. Herein, we showed that the protease inhibitor aprotinin (but not the protease inhibitor SERPINA1/alpha-1 antitrypsin) inhibited SARS-CoV-2 replication in therapeutically achievable concentrations. An analysis of proteomics and translatome data indicated that SARS-CoV-2 replication is associated with a downregulation of host cell protease inhibitors. Hence, aprotinin may compensate for downregulated host cell proteases during later virus replication cycles. Aprotinin displayed anti-SARS-CoV-2 activity in different cell types (Caco2, Calu-3, and primary bronchial epithelial cell air-liquid interface cultures) and against four virus isolates. In conclusion, therapeutic aprotinin concentrations exert anti-SARS-CoV-2 activity. An approved aprotinin aerosol may have potential for the early local control of SARS-CoV-2 replication and the prevention of COVID-19 progression to a severe, systemic disease.
Project description:In this work, hybridization chain reactions (HCRs) toward Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) nucleocapsid phosphoproteins gene loci and human RNase P are proposed to provide an isothermal amplification screening tool. The proposed chain reactions target the complementary DNA (cDNA) of SARS-CoV-2, with loci corresponding to gold-standard polymerase chain reaction (PCR) loci. Four hybridization chain reaction reactions are demonstrated herein, targeting N1/N2/N3 loci and human RNase P. The design of the hybridization chain reaction, herein, is assisted with an algorithm. The algorithm helps to search target sequences with low local secondary structure and high hybridization efficiency. The loop domain of the fuel hairpin molecule H1 and H2, which are the tunable segments in such reactions, are used as an optimization parameter to improve the hybridization efficiency of the chain reaction. The algorithm-derived HCR reactions were validated with gel electrophoresis. All proposed reactions exhibit a hybridization complex with a molecular mass >1.5k base pairs, which is clear evidence of chain reaction. The hybridization efficiency trend revealed by gel electrophoresis corresponds nicely to the simulated data from the algorithm. The HCR reactions and the corresponding algorithm serve as a basis to further SARS-CoV-2 sensing applications and facilitate better screening strategies for the prevention of on-going pandemics.
Project description:BACKGROUND:Amplification of viral ribonucleic acid (RNA) by real-time reverse transcriptase polymerase chain reaction (rRT-PCR) is the gold standard to detect severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Since the initial outbreak, strategies to detect and isolate patients have been important to avoid uncontrolled viral spread. Although testing capacities have been upscaled, there is still a need for reliable high throughput test systems, specifically those that require alternative consumables. Therefore, we tested and compared two different methods for the detection of viral PCR products: rRT-PCR and mass spectrometry (MS). METHODS:Viral RNA was isolated and amplified from oro- or nasopharyngeal swabs. A total of 22 samples that tested positive and 22 samples that tested negative for SARS-CoV-2 by rRT-PCR were analyzed by MS. Results of the rRT-PCR and the MS protocol were compared. RESULTS:Results of rRT-PCR and the MS test system were in concordance in all samples. Time-to-results was faster for rRT-PCR. Hands-on-time was comparable in both assays. CONCLUSIONS:MS is a fast, reliable and cost-effective alternative for the detection of SARS-CoV-2 from oral and nasopharyngeal swabs.
Project description:BackgroundThe ongoing coronavirus disease (COVID-19) pandemic has major impacts on health systems, the economy and society. Assessing infection attack rates in the population is critical for estimating disease severity and herd immunity which is needed to calibrate public health interventions. We have previously shown that it is possible to achieve this in real time to impact public health decision making.AimOur objective was to develop and evaluate serological assays applicable in large-scale sero-epidemiological studies.MethodsWe developed an ELISA to detect IgG and IgM antibodies to the receptor-binding domain (RBD) of the spike protein of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). We evaluated its sensitivity and specificity in combination with confirmatory microneutralisation (MN) and 90% plaque reduction neutralisation tests (PRNT90) in 51 sera from 24 patients with virologically confirmed COVID-19 and in age-stratified sera from 200 healthy controls.ResultsIgG and IgM RBD ELISA, MN and PRNT90 were reliably positive after 29 days from illness onset with no detectable cross-reactivity in age-stratified controls. We found that PRNT90 tests were more sensitive in detecting antibody than MN tests carried out with the conventional 100 tissue culture infectious dose challenge. Heparinised plasma appeared to reduce the infectivity of the virus challenge dose and may confound interpretation of neutralisation test.ConclusionUsing IgG ELISA based on the RBD of the spike protein to screen sera for SARS-CoV-2 antibody, followed by confirmation using PRNT90, is a valid approach for large-scale sero-epidemiology studies.