Unknown

Dataset Information

0

Unraveling the Mechanism of the IrIII -Catalyzed Regiospecific Synthesis of ?-Chlorocarbonyl Compounds from Allylic Alcohols.


ABSTRACT: We have used experimental studies and DFT calculations to investigate the IrIII -catalyzed isomerization of allylic alcohols into carbonyl compounds, and the regiospecific isomerization-chlorination of allylic alcohols into ?-chlorinated carbonyl compounds. The mechanism involves a hydride elimination followed by a migratory insertion step that may take place at C? but also at C? with a small energy-barrier difference of 1.8?kcal?mol-1 . After a protonation step, calculations show that the final tautomerization can take place both at the Ir center and outside the catalytic cycle. For the isomerization-chlorination reaction, calculations show that the chlorination step takes place outside the cycle with an energy barrier much lower than that for the tautomerization to yield the saturated ketone. All the energies in the proposed mechanism are plausible, and the cycle accounts for the experimental observations.

SUBMITTER: Li M 

PROVIDER: S-EPMC7756427 | biostudies-literature | 2020 Nov

REPOSITORIES: biostudies-literature

altmetric image

Publications

Unraveling the Mechanism of the Ir<sup>III</sup> -Catalyzed Regiospecific Synthesis of α-Chlorocarbonyl Compounds from Allylic Alcohols.

Li Man M   Sanz-Marco Amparo A   Martinez-Erro Samuel S   García-Vázquez Víctor V   Mai Binh Khanh BK   Fernández-Gallardo Jacob J   Himo Fahmi F   Martín-Matute Belén B  

Chemistry (Weinheim an der Bergstrasse, Germany) 20201014 65


We have used experimental studies and DFT calculations to investigate the Ir<sup>III</sup> -catalyzed isomerization of allylic alcohols into carbonyl compounds, and the regiospecific isomerization-chlorination of allylic alcohols into α-chlorinated carbonyl compounds. The mechanism involves a hydride elimination followed by a migratory insertion step that may take place at Cβ but also at Cα with a small energy-barrier difference of 1.8 kcal mol<sup>-1</sup> . After a protonation step, calculatio  ...[more]

Similar Datasets

| S-EPMC4516158 | biostudies-literature
| S-EPMC6980370 | biostudies-literature
| S-EPMC6641598 | biostudies-literature
| S-EPMC5912103 | biostudies-other
| S-EPMC3933732 | biostudies-literature
| S-EPMC8150111 | biostudies-literature
| S-EPMC3429346 | biostudies-literature
| S-EPMC5180452 | biostudies-literature
| S-EPMC2861154 | biostudies-literature
| S-EPMC5180452 | biostudies-literature