Unknown

Dataset Information

0

Coupling an Electroactive Pseudomonas putida KT2440 with Bioelectrochemical Rhamnolipid Production.


ABSTRACT: Sufficient supply of oxygen is a major bottleneck in industrial biotechnological synthesis. One example is the heterologous production of rhamnolipids using Pseudomonas putida KT2440. Typically, the synthesis is accompanied by strong foam formation in the reactor vessel hampering the process. It is caused by the extensive bubbling needed to sustain the high respirative oxygen demand in the presence of the produced surfactants. One way to reduce the oxygen requirement is to enable the cells to use the anode of a bioelectrochemical system (BES) as an alternative sink for their metabolically derived electrons. We here used a P. putida KT2440 strain that interacts with the anode using mediated extracellular electron transfer via intrinsically produced phenazines, to perform heterologous rhamnolipid production under oxygen limitation. The strain P. putida RL-PCA successfully produced 30.4 ± 4.7 mg/L mono-rhamnolipids together with 11.2 ± 0.8 mg/L of phenazine-1-carboxylic acid (PCA) in 500-mL benchtop BES reactors and 30.5 ± 0.5 mg/L rhamnolipids accompanied by 25.7 ± 8.0 mg/L PCA in electrode containing standard 1-L bioreactors. Hence, this study marks a first proof of concept to produce glycolipid surfactants in oxygen-limited BES with an industrially relevant strain.

SUBMITTER: Askitosari TD 

PROVIDER: S-EPMC7763313 | biostudies-literature | 2020 Dec

REPOSITORIES: biostudies-literature

altmetric image

Publications

Coupling an Electroactive <i>Pseudomonas putida</i> KT2440 with Bioelectrochemical Rhamnolipid Production.

Askitosari Theresia D TD   Berger Carola C   Tiso Till T   Harnisch Falk F   Blank Lars M LM   Rosenbaum Miriam A MA  

Microorganisms 20201210 12


Sufficient supply of oxygen is a major bottleneck in industrial biotechnological synthesis. One example is the heterologous production of rhamnolipids using <i>Pseudomonas putida</i> KT2440. Typically, the synthesis is accompanied by strong foam formation in the reactor vessel hampering the process. It is caused by the extensive bubbling needed to sustain the high respirative oxygen demand in the presence of the produced surfactants. One way to reduce the oxygen requirement is to enable the cell  ...[more]

Similar Datasets

| S-EPMC3258213 | biostudies-literature
| S-EPMC10832537 | biostudies-literature
| S-EPMC3811597 | biostudies-literature
| S-EPMC9744835 | biostudies-literature
| S-EPMC7090098 | biostudies-literature
| S-EPMC6680625 | biostudies-literature
| S-EPMC7468518 | biostudies-literature
| S-EPMC4669411 | biostudies-literature
| S-EPMC7792162 | biostudies-literature
2022-03-26 | GSE198795 | GEO