Unknown

Dataset Information

0

Vitamin C Transporters and Their Implications in Carcinogenesis.


ABSTRACT: Vitamin C is implicated in various bodily functions due to its unique properties in redox homeostasis. Moreover, vitamin C also plays a great role in restoring the activity of 2-oxoglutarate and Fe2+ dependent dioxygenases (2-OGDD), which are involved in active DNA demethylation (TET proteins), the demethylation of histones, and hypoxia processes. Therefore, vitamin C may be engaged in the regulation of gene expression or in a hypoxic state. Hence, vitamin C has acquired great interest for its plausible effects on cancer treatment. Since its conceptualization, the role of vitamin C in cancer therapy has been a controversial and disputed issue. Vitamin C is transferred to the cells with sodium dependent transporters (SVCTs) and glucose transporters (GLUT). However, it is unknown whether the impaired function of these transporters may lead to carcinogenesis and tumor progression. Notably, previous studies have identified SVCTs' polymorphisms or their altered expression in some types of cancer. This review discusses the potential effects of vitamin C and the impaired SVCT function in cancers. The variations in vitamin C transporter genes may regulate the active transport of vitamin C, and therefore have an impact on cancer risk, but further studies are needed to thoroughly elucidate their involvement in cancer biology.

SUBMITTER: Linowiecka K 

PROVIDER: S-EPMC7765979 | biostudies-literature | 2020 Dec

REPOSITORIES: biostudies-literature

altmetric image

Publications

Vitamin C Transporters and Their Implications in Carcinogenesis.

Linowiecka Kinga K   Foksinski Marek M   Brożyna Anna A AA  

Nutrients 20201218 12


Vitamin C is implicated in various bodily functions due to its unique properties in redox homeostasis. Moreover, vitamin C also plays a great role in restoring the activity of 2-oxoglutarate and Fe<sup>2+</sup> dependent dioxygenases (2-OGDD), which are involved in active DNA demethylation (TET proteins), the demethylation of histones, and hypoxia processes. Therefore, vitamin C may be engaged in the regulation of gene expression or in a hypoxic state. Hence, vitamin C has acquired great interes  ...[more]

Similar Datasets

| S-EPMC3688468 | biostudies-literature
| S-EPMC7082261 | biostudies-literature
| S-EPMC7194567 | biostudies-literature
| S-EPMC1876373 | biostudies-literature
| S-EPMC4492233 | biostudies-literature
| S-EPMC5402541 | biostudies-literature
2013-06-13 | E-GEOD-45606 | biostudies-arrayexpress
2013-06-13 | GSE45606 | GEO
2009-06-01 | GSE14375 | GEO
| S-EPMC7407197 | biostudies-literature