Project description:2D layered materials, including metal-di-chalcogenides and transition metal layered double hydroxides, among others, are intensively studied because of new properties that emerge from their 2D confinement, which are attractive for advanced applications. Herein, 2D cobalt ion (Co2+) and benzimidazole (bIm) based zeolite-imidazole framework nanosheets, ZIF-9(III), are reported as exceptionally efficient electrocatalysts for the oxygen evolution reaction (OER). Specifically, liquid-phase ultrasonication is applied to exfoliate a [Co4(bIm)16] zeolite-imidazole framework (ZIF), named as ZIF-9(III) phase, into nanoscale sheets. ZIF-9(III) is selectively prepared through simple mechanical grinding of cobalt nitrate and benzimidazole in the presence of a small amount of ethanol. The resultant exfoliated nanosheets exhibit significantly higher OER activity in alkaline conditions than the corresponding bulk phases ZIF-9 and ZIF-9(III). The electrochemical and physicochemical characterization data support the assignment of the OER activity of the exfoliated nanosheet derived material to nitrogen coordinated cobalt oxyhydroxide N4CoOOH sites, following a mechanism known for Co-porphyrin and related systems. Thus, exfoliated 2D nanosheets hold promise as potential alternatives to commercial noble metal electrocatalysts for the OER.
Project description:3D metal-organic frameworks (MOFs) have gained attention as heterogeneous photocatalysts due to their porosity and unique host-guest interactions. Despite their potential, MOFs face challenges, such as inefficient mass transport and limited light penetration in photoinduced energy transfer processes. Recent advancements in organic photocatalysis have uncovered a variety of photoactive cores, while their heterogenization remains an underexplored area with great potential to build MOFs. This gap is bridged by incorporating photoactive cores into 2D MOF nanosheets, a process that merges the realms of small-molecule photochemistry and MOF chemistry. This approach results in recyclable heterogeneous photocatalysts that exhibit an improved mass transfer efficiency. This research demonstrates a bottom-up synthetic method for embedding photoactive cores into 2D MOF nanosheets, successfully producing variants such as PCN-641-NS, PCN-643-NS, and PCN-644-NS. The synthetic conditions were systematically studied to optimize the crystallinity and morphology of these 2D MOF nanosheets. Enhanced host-guest interactions in these 2D structures were confirmed through various techniques, particularly solid-state NMR studies. Additionally, the efficiency of photoinduced energy transfer in these nanosheets was evidenced through photoborylation reactions and the generation of reactive oxygen species (ROS).
Project description:In addition to size, shape and morphology, enzyme-mimetic property could be efficiently regulated by controlling composition, forming complexes or hybrids, and surface modification. Herein, Pd nanoparticles with an average diameter of 2.52 nm were decorated on ultrathin 2D copper(ii)-porphyrin derived metal-organic framework (MOF) nanosheets by a simple reduction method for catalytic activity regulation. In comparison with other nanozymes, the as-synthesized Pd modified 2D MOF hybrid nanosheets (Pd@Cu-TCPP(Fe)) presented excellent peroxidase-mimic activity, exhibiting an even superior catalytic ability towards H2O2 with a Michaelis-Menten constant as low as 2.33 mM. Based on a cascade reaction between glucose oxidase and Pd@Cu-TCPP(Fe), a colorimetric method for the detection of glucose was established and validated with a wide linear range (0.2-8.0 mM), good recovery (89.5-94.2%) and nice reproducibility (3.65%). All these features guaranteed its excellent ability for glucose determination in human cerebrospinal fluids. This study could offer a valuable reference for constructing novel optical biosensors.
Project description:Developing high-performance Fe-based ammonia catalysts through simple and cost-efficient methods has received an increased level of attention. Herein, we report for the first time, the synthesis of two-dimensional (2D) FeOOH nanoflakes encapsulated by mesoporous SiO2 (mSiO2) via a simple solution-based method for ammonia synthesis. Due to the sticking of the mSiO2 coating layers and the limited spaces in between, the Fe after reduction retains the 2D morphology, showing high resistance against the sintering in the harsh Haber-Bosch process. Compared to supported Fe particles dispersed on mSiO2 spheres, the coated catalyst shows a significantly improved catalytic activity by 50% at 425 °C. Thermal desorption spectroscopy (TDS) reveals the existence of a higher density of reactive sites for N2 activation in the 2D Fe catalyst, which is possibly coupled to a larger density of surface defect sites (kinks, steps, point defects) that are generally considered as active centers in ammonia synthesis. Besides the structural impact of the coating on the 2D Fe, the electronic one is elucidated by partially substituting Si with Al in the coating, confirmed by 29Si and 27Al magic-angle spinning nuclear magnetic resonance (MAS NMR). An increased apparent activation energy (Ea) of the Al-containing catalyst evidences an influence on the nature of the active site. The herein-developed stable 2D Fe nanostructures can serve as an example of a 2D material applied in catalysis, offering the chance of a rational catalyst design based on a stepwise introduction of various promoters, in the coating and on the metal, maintaining the spatial control of the active centers.
Project description:Morphology of support is of fundamental significance to the fabrication of highly efficient catalysts for CO oxidation reaction. Many methods for the construction of supports with specific morphology and structures greatly rely on controlling general physical and chemical synthesis conditions such as temperature or pH. In this paper, we report a facile route to prepare yttria nanosheet using NaCl as template to support platinum nanoparticles exhibiting higher CO oxidation activity than that of the normally prepared Pt/Y2O3. With the help of TEM and SEM, we found that Pt NPs evenly distributed on the surface of NaCl modified 2D-nanosheets with smaller size. The combination of XAFS and TEM characterizations demonstrated that the nano-size Pt species with PtxOy structure played an essential role in the conversion of CO and kept steady during the CO oxidation process. Moreover, the Pt nanoparticles supported on the NaCl templated Y2O3 nanosheets could be more easily reduced and thus exposed more Pt sites to adsorb CO molecules for CO oxidation according to XPS and DRIFTS results. This work offers a unique and general method for the preparation of potential non-cerium oxide rare earth element oxide supported nanocatalysts.
Project description:Two-dimensional (2D) nanomaterials benefit from the high specific surface area, unique surface properties, and quantum size effects, which have attracted widespread scientific attention. MXenes add many members to the 2D material family, mainly metal conductors, most of which are dielectrics, semiconductors, or semimetals. With excellent electron mobility, beneficial to electron-hole separation, and large functional groups that can be tightly coupled with other materials, MXenes have broad application prospects in photocatalysis. Meanwhile, the application of CeO2-based materials in organic catalysis, photocatalytic water splitting, and photodegradation of organic pollutants has been extensively explored, and studies have found that CeO2-based materials show good photocatalytic performance. In view of this, we synthesized regular octahedral CeO2 with a homojunction in one step by a hydrothermal method and compounded it with ultrathin 2D material MXene, which exhibited fast carrier migration efficiency and a good interfacial effect, making the material show excellent photocatalytic activity. The results showed that the photocatalytic H2 evolution performance of the MXene/CeO2 heterojunction was significantly improved. In this study, a low-cost catalyst with high photocatalytic activity was prepared, presenting a new research idea for achieving a combined 3D/2D photocatalytic system.
Project description:The ability to control electronic property of a material by externally applied voltage is greatly anticipated in modern electronics, and graphene provide potential application foreground for this issue on account of its exotic ambipolar transport property. In this study, we proposed that inorganic-graphene intercalated nanosheet is an effective solution to optimize the transport property of graphene. As an example, lithium vanadate-graphene (LiVO-graphene) alternately intercalated nanosheets were designed and successfully synthesized. Theoretical calculation implied that its rocking chair configuration may provide a new pathway to switch the carrier in graphene layer between p-type and n-type while the position of embedded Li ions is controlled by an external field. Thus, a demo transistor was fabricated with layer-by-layer overlapping of LiVO-graphene nanosheets which proved that this inorganic-graphene structure could be used for electrical modulation in electronic devices.
Project description:Development of three-dimensional nano-architectures on current collectors has emerged as an effective strategy for enhancing rate capability and cycling stability of the electrodes. Herein, a novel type of Ni3V2O8 nanowires, organized by ultrathin hierarchical nanosheets (less than 5 nm) on Ti foil, has been obtained by a two-step hydrothermal synthesis method. Studies on structural and thermal properties of the as-prepared Ni3V2O8 nanowire arrays are carried out and their morphology has changed obviously in the following heat treatment at 300 and 500?°C. As an electrode material for lithium ion batteries, the unique configuration of Ni3V2O8 nanowires presents enhanced capacitance, satisfying rate capability and good cycling stability. The reversible capacity of the as-prepared Ni3V2O8 nanowire arrays reaches 969.72 mAh · g(-1) with a coulombic efficiency over 99% at 500 mA · g(-1) after 500 cycles.
Project description:Single atom nonmetal 2D nanomaterials have shown considerable potential in cancer nanomedicines, owing to their intriguing properties and biocompatibility. Herein, ultrathin boron nanosheets (B NSs) are prepared through a novel top-down approach by coupling thermal oxidation etching and liquid exfoliation technologies, with controlled nanoscale thickness. Based on the PEGylated B NSs, a new photonic drug delivery platform is developed, which exhibits multiple promising features for cancer therapy and imaging, including: i) efficient NIR-light-to-heat conversion with a high photothermal conversion efficiency of 42.5%, ii) high drug-loading capacity and triggered drug release by NIR light and moderate acidic pH, iii) strong accumulation at tumor sites, iv) multimodal imaging properties (photoacoustic, photothermal, and fluorescence imaging), and v) complete tumor ablation and excellent biocompatibility. As far as it is known, this is the first report on the top-down fabrication of ultrathin 2D B NSs by the combined thermal oxidation etching and liquid exfoliation, as well as their application as a multimodal imaging-guided drug delivery platform. The newly prepared B NSs are also expected to provide a robust and useful 2D nanoplatform for various biomedical applications.
Project description:Tuning and optimizing the efficiency of light energy transfer play an important role in meeting modern challenges of minimizing energy loss and developing high-performance optoelectronic materials. However, attempts to fabricate systems giving highly efficient energy transfer between luminescent donor and acceptor have achieved limited success to date. Herein, we present a strategy towards phosphorescence energy transfer at a 2D orderly crystalline interface. We first show that new ultrathin nanosheet materials giving long-afterglow luminescence can be obtained by assembling aromatic guests into a layered double hydroxide host. Furthermore, we demonstrate that co-assembly of these long-lived energy donors with an energy acceptor in the same host generates an ordered arrangement of phosphorescent donor-acceptor pairs spatially confined within the 2D nanogallery, which affords energy transfer efficiency as high as 99.7%. Therefore, this work offers an alternative route to develop new types of long-afterglow nanohybrids and efficient light transfer systems with potential energy, illumination and sensor applications.