Unknown

Dataset Information

0

In Situ Synthesis of Fluorescent Mesoporous Silica-Carbon Dot Nanohybrids Featuring Folate Receptor-Overexpressing Cancer Cell Targeting and Drug Delivery.


ABSTRACT: Multifunctional nanocarrier-based theranostics is supposed to overcome some key problems in cancer treatment. In this work, a novel method for the preparation of a fluorescent mesoporous silica-carbon dot nanohybrid was developed. Carbon dots (CDs), from folic acid as the raw material, were prepared in situ and anchored on the surface of amino-modified mesoporous silica nanoparticles (MSNs-NH2) via a microwave-assisted solvothermal reaction. The as-prepared nanohybrid (designated MSNs-CDs) not only exhibited strong and stable yellow emission but also preserved the unique features of MSNs (e.g., mesoporous structure, large specific surface area, and good biocompatibility), demonstrating a potential capability for fluorescence imaging-guided drug delivery. More interestingly, the MSNs-CDs nanohybrid was able to selectively target folate receptor-overexpressing cancer cells (e.g., HeLa), indicating that folic acid still retained its function even after undergoing the solvothermal reaction. Benefited by these excellent properties, the fluorescent MSNs-CDs nanohybrid can be employed as a fluorescence-guided nanocarrier for the targeted delivery of anticancer drugs (e.g., doxorubicin), thereby enhancing chemotherapeutic efficacy and reducing side effects. Our studies may provide a facile strategy for the fabrication of multifunctional MSN-based theranostic platforms, which is beneficial in the diagnosis and therapy of cancers in future.

SUBMITTER: Zhao S 

PROVIDER: S-EPMC7770874 | biostudies-literature |

REPOSITORIES: biostudies-literature

Similar Datasets

2023-12-04 | GSE247020 | GEO
| S-EPMC7331230 | biostudies-literature
| S-EPMC3221805 | biostudies-literature
| S-EPMC5811075 | biostudies-literature
| S-EPMC8908532 | biostudies-literature
| S-EPMC3815984 | biostudies-literature
| S-EPMC10034601 | biostudies-literature
| S-EPMC5535255 | biostudies-literature
| S-EPMC10780618 | biostudies-literature
| S-EPMC6008237 | biostudies-literature