Renewable Cyclopentanol From Catalytic Hydrogenation-Rearrangement of Biomass Furfural Over Ruthenium-Molybdenum Bimetallic Catalysts
Ontology highlight
ABSTRACT: Biomass furfural-like compounds are chemicals that cannot be extracted from fossil materials, through which a large number of fine chemicals and fuel additives can be opened up, but one big efficiency problem during the transformation is the accumulation of oligomers. Here, we propose a novel and efficient Ru-Mo bimetallic catalyst for selective hydrogenation-rearrangement of furfural-like compounds. The result showed that an unprecedented rearrangement product selectivity of 89.1% to cyclopentanol was achieved under an optimized reaction condition over a 1%Ru?2.5%Mo/CNT catalyst reduced at 600°C. Subsequent characterization suggested that the catalyst presented with weak acidity and strong hydrogenation activity for the reaction, which not only ensures the smooth hydrogenation-rearrangement reaction but also inhibits the accumulation of furan polymers. These findings provide a convenient strategy to tune the catalytic performance of Mo-based catalysts by controlling the reduction and carburization conditions, which appear to be versatile for the rearrangement of furans and similar compounds.
SUBMITTER: Meng S
PROVIDER: S-EPMC7775491 | biostudies-literature | 2020 Jan
REPOSITORIES: biostudies-literature
ACCESS DATA