Unknown

Dataset Information

0

Anti-allergic drug azelastine suppresses colon tumorigenesis by directly targeting ARF1 to inhibit IQGAP1-ERK-Drp1-mediated mitochondrial fission.


ABSTRACT: This study aimed to screen novel anticancer strategies from FDA-approved non-cancer drugs and identify potential biomarkers and therapeutic targets for colorectal cancer (CRC). Methods: A library consisting of 1056 FDA-approved drugs was screened for anticancer agents. WST-1, colony-formation, flow cytometry, and tumor xenograft assays were used to determine the anticancer effect of azelastine. Quantitative proteomics, confocal imaging, Western blotting and JC-1 assays were performed to examine the effects on mitochondrial pathways. The target protein of azelastine was analyzed and confirmed by DARTS, WST-1, Biacore and tumor xenograft assays. Immunohistochemistry, gain- and loss-of-function experiments, WST-1, colony-formation, immunoprecipitation, and tumor xenograft assays were used to examine the functional and clinical significance of ARF1 in colon tumorigenesis. Results: Azelastine, a current anti-allergic drug, was found to exert a significant inhibitory effect on CRC cell proliferation in vitro and in vivo, but not on ARF1-deficient or ARF1-T48S mutant cells. ARF1 was identified as a direct target of azelastine. High ARF1 expression was associated with advanced stages and poor survival of CRC. ARF1 promoted colon tumorigenesis through its interaction with IQGAP1 and subsequent activation of ERK signaling and mitochondrial fission by enhancing the interaction of IQGAP1 with MEK and ERK. Mechanistically, azelastine bound to Thr-48 in ARF1 and repressed its activity, decreasing Drp1 phosphorylation. This, in turn, inhibited mitochondrial fission and suppressed colon tumorigenesis by blocking IQGAP1-ERK signaling. Conclusions: This study provides the first evidence that azelastine may be novel therapeutics for CRC treatment. ARF1 promotes colon tumorigenesis, representing a promising biomarker and therapeutic target in CRC.

SUBMITTER: Hu HF 

PROVIDER: S-EPMC7778598 | biostudies-literature | 2021

REPOSITORIES: biostudies-literature

altmetric image

Publications

Anti-allergic drug azelastine suppresses colon tumorigenesis by directly targeting ARF1 to inhibit IQGAP1-ERK-Drp1-mediated mitochondrial fission.

Hu Hui-Fang HF   Xu Wen Wen WW   Li Yang-Jia YJ   He Yan Y   Zhang Wei-Xia WX   Liao Long L   Zhang Qi-Hua QH   Han Lei L   Yin Xing-Feng XF   Zhao Xiao-Xu XX   Pan Yun-Long YL   Li Bin B   He Qing-Yu QY  

Theranostics 20210101 4


This study aimed to screen novel anticancer strategies from FDA-approved non-cancer drugs and identify potential biomarkers and therapeutic targets for colorectal cancer (CRC). <b>Methods:</b> A library consisting of 1056 FDA-approved drugs was screened for anticancer agents. WST-1, colony-formation, flow cytometry, and tumor xenograft assays were used to determine the anticancer effect of azelastine. Quantitative proteomics, confocal imaging, Western blotting and JC-1 assays were performed to e  ...[more]

Similar Datasets

| S-EPMC8168414 | biostudies-literature
| S-EPMC10017813 | biostudies-literature
| S-EPMC10491971 | biostudies-literature
| S-EPMC8115655 | biostudies-literature
| S-EPMC5260898 | biostudies-literature
| S-EPMC8780843 | biostudies-literature
| S-EPMC5680571 | biostudies-literature
| S-EPMC4666140 | biostudies-literature
| S-EPMC6115394 | biostudies-literature
| S-EPMC8126105 | biostudies-literature