Project description:Accumulation of IL-17-producing Th17 cells is associated with the development of multiple autoimmune diseases; however, the contribution of microRNA (miRNA) pathways to the intrinsic control of Th17 development remains unclear. Here, we demonstrated that miR-21 expression is elevated in Th17 cells and that mice lacking miR-21 have a defect in Th17 differentiation and are resistant to experimental autoimmune encephalomyelitis (EAE). Furthermore, we determined that miR-21 promotes Th17 differentiation by targeting and depleting SMAD-7, a negative regulator of TGF-? signaling. Moreover, the decreases in Th17 differentiation in miR-21-deficient T cells were associated with defects in SMAD-2/3 activation and IL-2 suppression. Finally, we found that treatment of WT mice with an anti-miR-21 oligonucleotide reduced the clinical severity of EAE, which was associated with a decrease in Th17 cells. Thus, we have characterized a T cell-intrinsic miRNA pathway that enhances TGF-? signaling, limits the autocrine inhibitory effects of IL-2, and thereby promotes Th17 differentiation and autoimmunity.
Project description:Recent evidence suggests that interleukin-17-producing CD4(+) T cells (Th17 cells) are the dominant pathogenic cellular component in autoimmune inflammatory diseases, including multiple sclerosis. It has recently been demonstrated that all-trans retinoic acid can suppress Th17 differentiation and promote the generation of Foxp3(+) regulatory T cells via retinoic acid receptor signals. Here, we investigated the effects of AM80, a synthetic retinoid with enhanced biological properties to all-trans retinoic acid, on Th17 differentiation and function and evaluated its therapeutic potential in experimental autoimmune encephalomyelitis (EAE), an animal model of multiple sclerosis. AM80 treatment was more effective than all-trans retinoic acid in inhibiting Th17 differentiation in vitro. Oral administration of AM80 was protective for the early development of EAE and the down-modulation of Th17 differentiation and effector functions in vivo. Moreover, AM80 inhibited interleukin-17 production by splenic memory T cells, in vitro-differentiated Th17 cells, and central nervous system-infiltrating effector T cells. Accordingly, AM80 was effective when administered therapeutically after the onset of EAE. Continuous AM80 treatment, however, was ineffective at inhibiting late EAE symptoms despite the maintained suppression of RORgammat and interleukin-17 expression levels by central nervous system-infiltrating T cells. We reveal that continuous AM80 treatment also led to the suppression of interleukin-10 production by a distinct T cell subset that expressed both Foxp3 and RORgammat. These findings suggest that retinoid signaling regulates both inflammatory Th17 cells and Th17-like regulatory cells.
Project description:Th17 cells play a critical role in autoimmune diseases, including multiple sclerosis and its animal model, experimental autoimmune encephalomyelitis. Response gene to complement (RGC)-32 is a cell cycle regulator and a downstream target of TGF-? that mediates its profibrotic activity. In this study, we report that RGC-32 is preferentially upregulated during Th17 cell differentiation. RGC-32-/- mice have normal Th1, Th2, and regulatory T cell differentiation but show defective Th17 differentiation in vitro. The impaired Th17 differentiation is associated with defects in IFN regulatory factor 4, B cell-activating transcription factor, retinoic acid-related orphan receptor ?t, and SMAD2 activation. In vivo, RGC-32-/- mice display an attenuated experimental autoimmune encephalomyelitis phenotype accompanied by decreased CNS inflammation and reduced frequency of IL-17- and GM-CSF-producing CD4+ T cells. Collectively, our results identify RGC-32 as a novel regulator of Th17 cell differentiation in vitro and in vivo and suggest that RGC-32 is a potential therapeutic target in multiple sclerosis and other Th17-mediated autoimmune diseases.
Project description:BackgroundProstaglandin I(2) (PGI(2)), a lipid mediator currently used in treatment of human disease, is a critical regulator of adaptive immune responses. Although PGI(2) signaling suppressed Th1 and Th2 immune responses, the role of PGI(2) in Th17 differentiation is not known.Methodology/principal findingsIn mouse CD4(+)CD62L(+) naïve T cell culture, the PGI(2) analogs iloprost and cicaprost increased IL-17A and IL-22 protein production and Th17 differentiation in vitro. This effect was augmented by IL-23 and was dependent on PGI(2) receptor IP signaling. In mouse bone marrow-derived CD11c(+) dendritic cells (BMDCs), PGI(2) analogs increased the ratio of IL-23/IL-12, which is correlated with increased ability of BMDCs to stimulate naïve T cells for IL-17A production. Moreover, IP knockout mice had delayed onset of a Th17-associated neurological disease, experimental autoimmune encephalomyelitis (EAE), and reduced infiltration of IL-17A-expressing mononuclear cells in the spinal cords compared to wild type mice. These results suggest that PGI(2) promotes in vivo Th17 responses.ConclusionThe preferential stimulation of Th17 differentiation by IP signaling may have important clinical implications as PGI(2) and its analogs are commonly used to treat human pulmonary hypertension.
Project description:Remyelination failure is a crucial component of disease progression in the autoimmune demyelinating disease Multiple Sclerosis (MS). The regenerative capacity of oligodendrocyte progenitor cells (OPCs) to replace myelinating oligodendrocytes is likely influenced by many aspects of the lesion environment including inflammatory signaling and extracellular matrix (ECM) deposition. These features of MS lesions are typically attributed to infiltrating leukocytes and reactive astrocytes. Here we demonstrate that fibroblasts also contribute to the inhibitory environment in the animal model of MS, experimental autoimmune encephalomyelitis (EAE). Using Col1α1GFP transgenic mice, we show that perivascular fibroblasts are activated in the spinal cord at EAE onset, and infiltrate the parenchyma by the peak of behavioral deficits where they are closely associated with areas of demyelination, myeloid cell accumulation, and ECM deposition. We further show that both fibroblast conditioned media and fibroblast ECM inhibit the differentiation of OPCs into mature oligodendrocytes. Taken together, our results indicate that the fibrotic scar is a major component of EAE pathology that leads to an inhibitory environment for remyelination, thus raising the possibility that anti-fibrotic mechanisms may serve as novel therapeutic targets for MS.
Project description:Medicinal plants as a rich pool for developing novel small molecule therapeutic medicine have been used for thousands of years. Carnosol as a bioactive diterpene compound originated from Rosmarinus officinalis (Rosemary) and Salvia officinalis, herbs extensively applied in traditional medicine for the treatment of multiple autoimmune diseases (1). In this study, we investigated the therapeutic effects and molecule mechanism of carnosol in experimental autoimmune encephalomyelitis (EAE), an animal model of multiple sclerosis (MS). Carnosol treatment significantly alleviated clinical development in the myelin oligodendrocyte glycoprotein (MOG35-55) peptide-induced EAE model, markedly decreased inflammatory cell infiltration into the central nervous system and reduced demyelination. Further, carnosol inhibited Th17?cell differentiation and signal transducer and activator of transcription 3 phosphorylation, and blocked transcription factor NF-?B nuclear translocation. In the passive-EAE model, carnosol treatment also significantly prevented Th17?cell pathogenicity. Moreover, carnosol exerted its therapeutic effects in the chronic stage of EAE, and, remarkably, switched the phenotypes of infiltrated macrophage/microglia. Taken together, our results show that carnosol has enormous potential for development as a therapeutic agent for autoimmune diseases such as MS.
Project description:Background/Aims:Increasing evidence have associated mitochondrial dysfunction and reactive oxygen species (ROS) generation to neuron loss in multiple sclerosis (MS). PGC-1α regulates mitochondrial biogenesis and respiration and plays a pivotal role in modulating ROS levels. Here, we investigated the potential function of peroxisome proliferator-activated receptor-γ co-activator-1α (PGC-1α) in the mammalian MS disease model, EAE experimental autoimmune encephalomyelitis (EAE). Methods:We used WT mice to evaluate the change of PGC during the course of EAE. The transgenic mice with neuron-specific overexpression of PGC-1α was applied to explore how PGC1 in neuron affects EAE outcome. A neuronal cell line of lentivirus transfection leading to PGC-1α markedly increased was applied to verify the protective effects of PGC1 in neurons. RNA-seq was employed to explore the potential target genes and signaling pathways. Results: We observed that PGC-1α were decreased at 13d, continuously decreased at 20d, then mildly increased at 30d in wild-type (WT) EAE mice, which is accompanied with alterations of mitochondrial antioxidants SOD2, Prx3, Trx2 and UCP4,5. Our study revealed that PGC-1αf/f Eno2-Cre mice improved EAE clinical symptoms, ameliorated inflammation and demyelination in spinal cords, increased mitochondrial antioxidants SOD2, Prx3, Trx2 and UCPs, reduced the production of ROS and inhibited the apoptotic pathways. In addition, PGC-1αf/f Eno2-Cre mice showed decreased apoptotic neurons compared with the WT EAE mice. In vitro, overexpressing PGC-1α by lentivirus transfection revealed similar results with that of in vivo by using NSC-34 cells treated with 1mg/ml lipopolysaccharide (LPS). Furthermore, RNA-seq analysis showed that apoptotic processes were significantly enriched in the top 10 significant GO terms of differentially expressed (DE) gene and apotosis pathway was significantly enriched in KEGG pathway analysis. Conclusion: Taken together, our findings indicate that upregulation of neuronal PGC-1α protected neuron apotosis in EAE and in vitro.
Project description:The Hedgehog (Hh) pathway is essential for the embryonic development and homeostatic maintenance of many adult tissues and organs. It has also been associated with some functions of the innate and adaptive immune system. However, its involvement in the immune response has not been well determined. Here we study the role of Hh signalling in the modulation of the immune response by using the Ptch-1-LacZ+/- mouse model (hereinafter referred to as ptch+/-), in which the hemizygous inactivation of Patched-1, the Hh receptor gene, causes the constitutive activation of Hh response genes. The in vitro TCR stimulation of spleen and lymph node (LN) T cells showed increased levels of Th2 cytokines (IL-4 and IL-10) in ptch+/-cells compared to control cells from wild-type (wt) littermates, suggesting that the Th2 phenotype is favoured by Hh pathway activation. In addition, CD4+ cells secreted less IL-17, and the establishment of the Th1 phenotype was impaired in ptch+/- mice. Consistently, in response to an inflammatory challenge by the induction of experimental autoimmune encephalomyelitis (EAE), ptch+/- mice showed milder clinical scores and more minor spinal cord damage than wt mice. These results demonstrate a role for the Hh/ptch pathway in immune response modulation and highlight the usefulness of the ptch+/- mouse model for the study of T-cell-mediated diseases and for the search for new therapeutic strategies in inflammatory diseases.
Project description:Histone deacetylases are key epigenetic regulators that control T cell-mediated immunity. A T cell-specific deletion of Hdac1 (HDAC1cKO) protects mice against experimental autoimmune encephalomyelitis (EAE). However, it remains elusive whether inhibition of HDAC1 enzymatic activity and thus mimicking HDAC1 inhibitor treatment is sufficient to block EAE induction. In order to address this question, we generated a novel mouse strain that expresses catalytically inactive HDAC1 (HDAC1Off) from the Rosa26 locus in HDAC1cKO CD4+ T cells to mimic selective inhibition of HDAC1 enzymatic activity in vivo. Mice expressing wildtype HDAC1 in HDAC1cKO CD4+ T cells (HDAC1On) were generated as corresponding controls. In contrast to HDAC1On mice, HDAC1Off mice did not develop EAE, and this correlated with diminished leukocyte CNS infiltration. HDAC1Off CD4+ T cells in the CNS displayed a severe reduction of IFNγ, IL-17A and TNFα proinflammatory cytokine expression. In vivo activated HDAC1Off CD4+ T cells downregulated gene sets associated with T cell activation, inflammatory response and cell migration, indicating impaired effector functions of HDAC1Off CD4+ T cells. Thus, our study demonstrates that the inhibition of the catalytic activity of HDAC1 is sufficient to achieve a clinical benefit in EAE disease development. This raises the exciting translational perspective that targeting HDAC1 enzymatic activity is a promising therapeutic strategy in treating human T cell-mediated autoimmune diseases.
Project description:BACKGROUND:Toll-like receptor 4 (TLR4) is well known for activating the innate immune system; however, it is also highly expressed in adaptive immune cells, such as CD4+ T-helper 17 (Th17) cells, which play a key role in multiple sclerosis (MS) pathology. However, the function and governing mechanism of TLR4 in Th17 remain unclear. METHODS:The changes of TLR4 in CD4+ T cells from MS patients and experimental autoimmune encephalomyelitis (EAE) mice were tested. TLR4-deficient (TLR4-/-) naïve T cells were induced in vitro and transferred into Rag1-/- mice to measure Th17 differentiation and EAE pathology. DNA sequence analyses combining with deletion fragments and mutation analyses, chromatin immunoprecipitation (ChIP), and electrophoretic mobility shift assay (EMSA) were used to explore the mechanism of TLR4 signaling pathway in regulating Th17 differentiation. RESULTS:The levels of TLR4 were increased in CD4+ Th17 cells both from MS patients and EAE mice, as well as during Th17 differentiation in vitro. TLR4-/- CD4+ naïve T cells inhibited their differentiation into Th17, and transfer of TLR4-/- CD4+ naïve T cells into Rag1-/- mice was defective in promoting EAE, characterized by less demyelination and Th17 infiltration in the spinal cord. TLR4 signal enhanced Th17 differentiation by activating RelA, downregulating the expression of miR-30a, a negative regulator of Th17 differentiation. Inhibition of RelA activity increased miR-30a level, but decreased Th17 differentiation rate. Furthermore, RelA directly regulated the expression of miR-30a via specific binding to a conserved element of miR-30a gene. CONCLUSIONS:TLR4-/- CD4+ naïve T cells are inadequate in differentiating to Th17 cells both in vitro and in vivo. TLR4-RelA-miR-30a signal pathway regulates Th17 differentiation via direct binding of RelA to the regulatory element of miR-30a gene. Our results indicate modulating TLR4-RelA-miR-30a signal in Th17 may be a therapeutic target for Th17-mediated neurodegeneration in neuroinflammatory diseases.