Unknown

Dataset Information

0

High-resolution single-cell 3D-models of chromatin ensembles during Drosophila embryogenesis.


ABSTRACT: Single-cell chromatin studies provide insights into how chromatin structure relates to functions of individual cells. However, balancing high-resolution and genome wide-coverage remains challenging. We describe a computational method for the reconstruction of large 3D-ensembles of single-cell (sc) chromatin conformations from population Hi-C that we apply to study embryogenesis in Drosophila. With minimal assumptions of physical properties and without adjustable parameters, our method generates large ensembles of chromatin conformations via deep-sampling. Our method identifies specific interactions, which constitute 5-6% of Hi-C frequencies, but surprisingly are sufficient to drive chromatin folding, giving rise to the observed Hi-C patterns. Modeled sc-chromatins quantify chromatin heterogeneity, revealing significant changes during embryogenesis. Furthermore, >50% of modeled sc-chromatin maintain topologically associating domains (TADs) in early embryos, when no population TADs are perceptible. Domain boundaries become fixated during development, with strong preference at binding-sites of insulator-complexes upon the midblastula transition. Overall, high-resolution 3D-ensembles of sc-chromatin conformations enable further in-depth interpretation of population Hi-C, improving understanding of the structure-function relationship of genome organization.

SUBMITTER: Sun Q 

PROVIDER: S-EPMC7794469 | biostudies-literature | 2021 Jan

REPOSITORIES: biostudies-literature

altmetric image

Publications

High-resolution single-cell 3D-models of chromatin ensembles during Drosophila embryogenesis.

Sun Qiu Q   Perez-Rathke Alan A   Czajkowsky Daniel M DM   Shao Zhifeng Z   Liang Jie J  

Nature communications 20210108 1


Single-cell chromatin studies provide insights into how chromatin structure relates to functions of individual cells. However, balancing high-resolution and genome wide-coverage remains challenging. We describe a computational method for the reconstruction of large 3D-ensembles of single-cell (sc) chromatin conformations from population Hi-C that we apply to study embryogenesis in Drosophila. With minimal assumptions of physical properties and without adjustable parameters, our method generates  ...[more]

Similar Datasets

2023-10-13 | E-MTAB-13115 | biostudies-arrayexpress
| S-EPMC5156528 | biostudies-literature
| S-EPMC3931741 | biostudies-literature
| S-EPMC3297759 | biostudies-literature
| S-EPMC6128862 | biostudies-literature
| S-EPMC6428844 | biostudies-literature
| S-EPMC4028358 | biostudies-literature
| S-EPMC4405355 | biostudies-literature
2021-12-21 | E-MTAB-10240 | biostudies-arrayexpress
| S-EPMC3814893 | biostudies-literature