Unknown

Dataset Information

0

Crohn's Disease Pathobiont Adherent-Invasive E coli Disrupts Epithelial Mitochondrial Networks With Implications for Gut Permeability.


ABSTRACT:

Background & aims

Adherent-invasive Escherichia coli are implicated in inflammatory bowel disease, and mitochondrial dysfunction has been observed in biopsy specimens from patients with inflammatory bowel disease. As a novel aspect of adherent-invasive E coli-epithelial interaction, we hypothesized that E coli (strain LF82) would elicit substantial disruption of epithelial mitochondrial form and function.

Methods

Monolayers of human colon-derived epithelial cell lines were exposed to E coli-LF82 or commensal E coli and RNA sequence analysis, mitochondrial function (adenosine triphosphate synthesis) and dynamics (mitochondrial network imaging, immunoblotting for fission and fusion proteins), and epithelial permeability (transepithelial resistance, flux of fluorescein isothiocyanate-dextran and bacteria) were assessed.

Results

E coli-LF82 significantly affected epithelial expression of ?8600 genes, many relating to mitochondrial function. E coli-LF82-infected epithelia showed swollen mitochondria, reduced mitochondrial membrane potential and adenosine triphosphate, and fragmentation of the mitochondrial network: events not observed with dead E coli-LF82, medium from bacterial cultures, or control E coli. Treatment with Mitochondrial Division Inhibitor 1 (Mdivi1, inhibits dynamin-related peptide 1, guanosine triphosphatase principally responsible for mitochondrial fission) or P110 (prevents dynamin-related peptide 1 binding to mitochondrial fission 1 protein) partially reduced E coli-LF82-induced mitochondrial fragmentation in the short term. E coli-LF82-infected epithelia showed loss of the long isoform of optic atrophy factor 1, which mediates mitochondrial fusion. Mitochondrial Division Inhibitor 1 reduced the magnitude of E coli-LF82-induced increased transepithelial flux of fluorescein isothiocyanate dextran. By 8 hours after infection, increased cytosolic cytochrome C and DNA fragmentation were apparent without evidence of caspase-3 or apoptosis inducing factor activation.

Conclusions

Epithelial mitochondrial fragmentation caused by E coli-LF82 could be targeted to maintain cellular homeostasis and mitigate infection-induced loss of epithelial barrier function. Data have been deposited in NCBI's Gene Expression Omnibus and are accessible through GEO series accession numbers GSE154121 and GSE154122 (https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE154121).

SUBMITTER: Mancini NL 

PROVIDER: S-EPMC7797367 | biostudies-literature | 2021

REPOSITORIES: biostudies-literature

altmetric image

Publications

Crohn's Disease Pathobiont Adherent-Invasive E coli Disrupts Epithelial Mitochondrial Networks With Implications for Gut Permeability.

Mancini Nicole L NL   Rajeev Sruthi S   Jayme Timothy S TS   Wang Arthur A   Keita Åsa V ÅV   Workentine Matthew L ML   Hamed Samira S   Söderholm Johan D JD   Lopes Fernando F   Shutt Timothy E TE   Shearer Jane J   McKay Derek M DM  

Cellular and molecular gastroenterology and hepatology 20200928 2


<h4>Background & aims</h4>Adherent-invasive Escherichia coli are implicated in inflammatory bowel disease, and mitochondrial dysfunction has been observed in biopsy specimens from patients with inflammatory bowel disease. As a novel aspect of adherent-invasive E coli-epithelial interaction, we hypothesized that E coli (strain LF82) would elicit substantial disruption of epithelial mitochondrial form and function.<h4>Methods</h4>Monolayers of human colon-derived epithelial cell lines were exposed  ...[more]

Similar Datasets

| S-EPMC2941450 | biostudies-literature
| S-EPMC6357120 | biostudies-literature
| S-EPMC6557746 | biostudies-literature
| S-EPMC8632309 | biostudies-literature
| S-EPMC7279240 | biostudies-literature
| S-EPMC5964128 | biostudies-literature
| S-EPMC7034058 | biostudies-literature
| S-EPMC8598956 | biostudies-literature
| S-EPMC11007067 | biostudies-literature
| S-EPMC8598958 | biostudies-literature