Ontology highlight
ABSTRACT: Background
Studies using highly sensitive molecular techniques have detected bacterial communities below the human epidermis. Depending on their abundance and composition, this finding could be clinically relevant. The aim of this study was to determine if bacteria can be detected in the dermis and subcutaneous tissue of dogs without cutaneous disease using two different approaches: traditional cultures and DNA sequencing of the V4 region of bacterial 16S rRNA gene using next-generation sequencing (NGS).Results
Seven healthy dogs were included in the study, and two sets of samples were collected from each subject. Sample sets were composed of a 6-mm abdominal skin biopsy, including epidermis, dermis, and subcutis, a skin surface swab, and an environmental blank sample for contamination control. One set of samples from each dog was submitted for bacterial culture and the other one for bacterial DNA amplification and sequencing. Five different bacterial genera (Staphylococcus, Bacillus, Corynebacterium, Streptococcus, and Enterococcus) were isolated in five out of the seven skin surface swab samples with aerobic microbiological culture methods, while no growth was obtained from the other two samples. Although some DNA could be amplified from epidermal, dermal, and subcutaneous tissue samples, the results of the NGS were similar to those of the blanks.Conclusion
When investigated with aerobic microbiological culture methods, the dermis and subcutaneous tissue of dogs are sterile. NGS techniques lead to the detection of some bacterial DNA, similar to the signal detected in blanks, which does not support the presence of a microbiota in dermis or subcutaneous tissue.
SUBMITTER: Garcia-Fonticoba R
PROVIDER: S-EPMC7807805 | biostudies-literature | 2020 Sep
REPOSITORIES: biostudies-literature
Animal microbiome 20200922 1
<h4>Background</h4>Studies using highly sensitive molecular techniques have detected bacterial communities below the human epidermis. Depending on their abundance and composition, this finding could be clinically relevant. The aim of this study was to determine if bacteria can be detected in the dermis and subcutaneous tissue of dogs without cutaneous disease using two different approaches: traditional cultures and DNA sequencing of the V4 region of bacterial 16S rRNA gene using next-generation ...[more]