Unknown

Dataset Information

0

Optical pattern generator for efficient bio-data encoding in a photonic sequence comparison architecture.


ABSTRACT: In this study, optical technology is considered as SA issues' solution with the potential ability to increase the speed, overcome memory-limitation, reduce power consumption, and increase output accuracy. So we examine the effect of bio-data encoding and the creation of input images on the pattern-recognition error-rate at the output of optical Vander-lugt correlator. Moreover, we present a genetic algorithm-based coding approach, named as GAC, to minimize output noises of cross-correlating data. As a case study, we adopt the proposed coding approach within a correlation-based optical architecture for counting k-mers in a DNA string. As verified by the simulations on Salmonella whole-genome, we can improve sensitivity and speed more than 86% and 81%, respectively, compared to BLAST by using coding set generated by GAC method fed to the proposed optical correlator system. Moreover, we present a comprehensive report on the impact of 1D and 2D cross-correlation approaches, as-well-as various coding parameters on the output noise, which motivate the system designers to customize the coding sets within the optical setup.

SUBMITTER: Akbari Rokn Abadi S 

PROVIDER: S-EPMC7810328 | biostudies-literature | 2021

REPOSITORIES: biostudies-literature

altmetric image

Publications

Optical pattern generator for efficient bio-data encoding in a photonic sequence comparison architecture.

Akbari Rokn Abadi Saeedeh S   Hashemi Dijujin Negin N   Koohi Somayyeh S  

PloS one 20210115 1


In this study, optical technology is considered as SA issues' solution with the potential ability to increase the speed, overcome memory-limitation, reduce power consumption, and increase output accuracy. So we examine the effect of bio-data encoding and the creation of input images on the pattern-recognition error-rate at the output of optical Vander-lugt correlator. Moreover, we present a genetic algorithm-based coding approach, named as GAC, to minimize output noises of cross-correlating data  ...[more]

Similar Datasets

| S-EPMC9966110 | biostudies-literature
| S-EPMC5324125 | biostudies-literature
| S-EPMC2496899 | biostudies-literature
| S-EPMC7610394 | biostudies-literature
| S-EPMC419797 | biostudies-literature
| S-EPMC4632029 | biostudies-literature
| S-EPMC2858972 | biostudies-literature
| S-EPMC3635810 | biostudies-literature
| S-EPMC6717511 | biostudies-literature
| S-EPMC9445171 | biostudies-literature