Peripheral rods: a specialized developmental cell type in Myxococcus xanthus.
Ontology highlight
ABSTRACT: In response to nutrient deprivation, the ubiquitous Gram-negative soil bacterium Myxococcus xanthus undergoes a well-characterized developmental response, resulting in the formation of a multicellular fruiting body. The center of the fruiting body consists of myxospores; surrounding this structure are rod-shaped peripheral cells. Unlike spores, the peripheral rods are a metabolically active cell type that inhabits nutrient-deprived environments. The survival characteristics exhibited by peripheral rods, protection from oxidative stress and heat shock, are common survival characteristics exhibited by cells in stationary phase including modifications to morphology and metabolism. Vegetative M. xanthus cells undergo a number of physiological changes during the transition into stationary phase similar to other proteobacteria. In M. xanthus, stationary-phase cells are not considered a component of the developmental response and occur when cells are grown on nutrient-rich plates or in dispersed aqueous media. However, this cell type is not routinely studied and little of its physiology is known. Similarities between these two stress-induced cell types led to the question of whether peripheral rods are actually a distinct developmental cell type or simply cells in stationary phase. In this study, we examine the transcriptome of peripheral rods and its relationship to development. This work demonstrates that peripheral rods are in fact a distinct developmentally differentiated cell type. Although peripheral rods and stationary phase cells display similar characteristics, each transcriptomic pattern is unique and quite different from that of any other M. xanthus cell type.
SUBMITTER: Whitfield DL
PROVIDER: S-EPMC7810364 | biostudies-literature | 2020 Mar
REPOSITORIES: biostudies-literature
ACCESS DATA