Unknown

Dataset Information

0

The response of zircon to the extreme pressures and temperatures of a lightning strike.


ABSTRACT: Hypervelocity impacts can produce features in zircon that are not normally produced by endogenic processes. However, lightning can also induce extreme pressure-temperature excursions, and its effect on zircon has not been studied. With the aim to recognise features that form in response to extreme pressure-temperature excursions but are not unique to hypervelocity impacts, we imaged and undertook microstructural characterization of zircon in a fulgurite (a tubular body of glass and fused clasts that formed in response to a lightning strike). We document zircon with granular ZrO2 and rims of vermicular ZrO2, features which vary in abundance with increasing distance from the fulgurite's central void. This indicates that these features formed in response to the lightning strike. Zircon dissociation to ZrO2 and SiO2 is a high-temperature, relatively low-pressure phenomenon, consistent with previous suggestions that lightning strikes involve extreme temperatures as well as pressures greater than those usually generated in Earth's crust but rarely?>?10 GPa. The rims of monoclinic ZrO2 record crystallographic evidence for precursor cubic ZrO2, demonstrating that cubic ZrO2 is not unique to hypervelocity impacts. Given the likelihood that this fulgurite experienced pressures of, at most, a few GPa, evidence for cubic ZrO2 indicates peak temperatures?>?2000 °C.

SUBMITTER: Kenny GG 

PROVIDER: S-EPMC7810979 | biostudies-literature | 2021 Jan

REPOSITORIES: biostudies-literature

altmetric image

Publications

The response of zircon to the extreme pressures and temperatures of a lightning strike.

Kenny Gavin G GG   Pasek Matthew A MA  

Scientific reports 20210115 1


Hypervelocity impacts can produce features in zircon that are not normally produced by endogenic processes. However, lightning can also induce extreme pressure-temperature excursions, and its effect on zircon has not been studied. With the aim to recognise features that form in response to extreme pressure-temperature excursions but are not unique to hypervelocity impacts, we imaged and undertook microstructural characterization of zircon in a fulgurite (a tubular body of glass and fused clasts  ...[more]

Similar Datasets

| S-EPMC11339985 | biostudies-literature
| S-EPMC5843378 | biostudies-literature
| S-EPMC4655365 | biostudies-literature
| S-EPMC3631681 | biostudies-other
| S-EPMC6494508 | biostudies-literature
| S-EPMC4753252 | biostudies-literature
| S-EPMC7037513 | biostudies-literature
| S-EPMC6060175 | biostudies-literature
| S-EPMC10324312 | biostudies-literature
| S-EPMC7915672 | biostudies-literature