Connexin36 localization along axon initial segments in the mammalian CNS.
Ontology highlight
ABSTRACT: Electrical synapses formed by gap junctions occur at a variety of neuronal subcellular sites in the mammalian central nervous system (CNS), including at somatic, dendritic and axon terminal compartments. Numerous electrophysiological studies using mice and rats, as well as computer modelling approaches, have predicted the additional occurrence of electrical synapses between axons near their emergence from neuronal somata. Here, we used immunofluorescence methods to search for localization of the neuronal gap junction-forming protein connexin36 (Cx36) along axon initial segments (AISs) labelled for the AIS marker ankyrinG. Immunofluorescent Cx36-puncta were found to be associated with AISs in several CNS regions of mice, including the spinal cord, inferior olive and cerebral cortex. Localization of Cx36-puncta at AISs was confirmed by confocal single scan and 3D imaging, immunofluorescence intensity profiling and high resolution structured illumination microscopy (SIM). AISs measuring up to 30 µm in length displayed typically a single Cx36-punctum and the incidence of these long AISs displaying Cx36-puncta ranged from 3% to 7% in the inferior olive and in various layers of the cerebral cortex. In the inferior olive, the gap junction associated protein zonula occludens-1 (ZO-1) was found to be co-localized with Cx36-puncta on AISs, indicating that these puncta have some of the molecular constituents of gap junctions. Our results add to the neuronal subcellular locations at which Cx36 is deployed, and raise possibilities for its involvement in novel functions in the AIS compartment.
SUBMITTER: Thomas D
PROVIDER: S-EPMC7811956 | biostudies-literature | 2020
REPOSITORIES: biostudies-literature
ACCESS DATA