Chronic Oral Administration of Magnesium-L-Threonate Prevents Oxaliplatin-Induced Memory and Emotional Deficits by Normalization of TNF-α/NF-κB Signaling in Rats.
Ontology highlight
ABSTRACT: Antineoplastic drugs such as oxaliplatin (OXA) often induce memory and emotional deficits. At present, the mechanisms underlying these side-effects are not fully understood, and no effective treatment is available. Here, we show that the short-term memory deficits and anxiety-like and depression-like behaviors induced by intraperitoneal injections of OXA (4 mg/kg per day for 5 consecutive days) were accompanied by synaptic dysfunction and downregulation of the NR2B subunit of N-methyl-D-aspartate receptors in the hippocampus, which is critically involved in memory and emotion. The OXA-induced behavioral and synaptic changes were prevented by chronic oral administration of magnesium-L-threonate (L-TAMS, 604 mg/kg per day, from 2 days before until the end of experiments). We found that OXA injections significantly reduced the free Mg2+ in serum and cerebrospinal fluid (from ~ 0.8 mmol/L to ~ 0.6 mmol/L). The Mg2+ deficiency (0.6 mmol/L) upregulated tumor necrosis factor (TNF-α) and phospho-p65 (p-p65), an active form of nuclear factor-kappaB (NF-κB), and downregulated the NR2B subunit in cultured hippocampal slices. Oral L-TAMS prevented the OXA-induced upregulation of TNF-α and p-p65, as well as microglial activation in the hippocampus and the medial prefrontal cortex. Finally, similar to oral L-TAMS, intracerebroventricular injection of PDTC, an NF-κB inhibitor, also prevented the OXA-induced memory/emotional deficits and the changes in TNF-α, p-p65, and microglia. Taken together, the activation of TNF-α/NF-κB signaling resulting from reduced brain Mg2+ is responsible for the memory/emotional deficits induced by OXA. Chronic oral L-TAMS may be a novel approach to treating chemotherapy-induced memory/emotional deficits.
Project description:BackgroundBladder-related pain symptoms in patients with bladder pain syndrome/interstitial cystitis (BPS/IC) are often accompanied by depression and memory deficits. Magnesium deficiency contributes to neuroinflammation and is associated with pain, depression, and memory deficits. Neuroinflammation is involved in the mechanical allodynia of cyclophosphamide (CYP)-induced cystitis. Magnesium-L-Threonate (L-TAMS) supplementation can attenuate neuroinflammation. This study aimed to determine whether and how L-TAMS influences mechanical allodynia and accompanying depressive symptoms and memory deficits in CYP-induced cystitis.MethodsInjection of CYP (50 mg/kg, intraperitoneally, every 3 days for 3 doses) was used to establish a rat model of BPS/IC. L-TAMS was administered in drinking water (604 mg·kg-1·day-1). Mechanical allodynia in the lower abdomen was assessed with von Frey filaments using the up-down method. Forced swim test (FST) and sucrose preference test (SPT) were used to measure depressive-like behaviors. Novel object recognition test (NORT) was used to detect short-term memory function. Concentrations of Mg2+ in serum and cerebrospinal fluid (CSF) were measured by calmagite chronometry. Western blot and immunofluorescence staining measured the expression of tumor necrosis factor-α/nuclear factor-κB (TNF-α/NF-κB), interleukin-1β (IL-1β), and N-methyl-D-aspartate receptor type 2B subunit (NR2B) of the N-methyl-D-aspartate receptor in the L6-S1 spinal dorsal horn (SDH) and hippocampus.ResultsFree Mg2+ was reduced in the serum and CSF of the CYP-induced cystitis rats on days 8, 12, and 20 after the first CYP injection. Magnesium deficiency in the serum and CSF correlated with the mechanical withdrawal threshold, depressive-like behaviors, and short-term memory deficits (STMD). Oral application of L-TAMS prevented magnesium deficiency and attenuated mechanical allodynia (n = 14) and normalized depressive-like behaviors (n = 10) and STMD (n = 10). The upregulation of TNF-α/NF-κB signaling and IL-1β in the L6-S1 SDH or hippocampus was reversed by L-TAMS. The change in NR2B expression in the SDH and hippocampus in the cystitis model was normalized by L-TAMS.ConclusionsNormalization of magnesium deficiency by L-TAMS attenuated mechanical allodynia, depressive-like behaviors, and STMD in the CYP-induced cystitis model via inhibition of TNF-α/NF-κВ signaling and normalization of NR2B expression. Our study provides evidence that L-TAMS may have therapeutic value for treating pain and comorbid depression or memory deficits in BPS/IC patients.
Project description:Tumor necrosis factor (TNF) is a pleiotropic cytokine whose primary physiological function involves coordinating inflammatory and adaptive immune responses. However, uncontrolled TNF signaling causes aberrant inflammation and has been implicated in several human ailments. Therefore, an understanding of the molecular mechanisms underlying dynamical and gene controls of TNF signaling bear significance for human health. As such, TNF engages the canonical nuclear factor kappa B (NF-κB) pathway to activate RelA:p50 heterodimers, which induce expression of specific immune response genes. Brief and chronic TNF stimulation produces transient and long-lasting NF-κB activities, respectively. Negative feedback regulators of the canonical pathway, including IκBα, are thought to ensure transient RelA:p50 responses to short-lived TNF signals. The non-canonical NF-κB pathway mediates RelB activity during immune differentiation involving p100. We uncovered an unexpected role of p100 in TNF signaling. Brief TNF stimulation of p100-deficient cells triggered an additional late NF-κB activity consisting of RelB:p50 heterodimers, which modified the TNF-induced gene-expression program. In p100-deficient cells subjected to brief TNF stimulation, RelB:p50 not only sustained the expression of a subset of RelA-target immune response genes but also activated additional genes that were not normally induced by TNF in WT mouse embryonic fibroblasts (MEFs) and were related to immune differentiation and metabolic processes. Despite this RelB-mediated distinct gene control, however, RelA and RelB bound to mostly overlapping chromatin sites in p100-deficient cells. Repeated TNF pulses strengthened this RelB:p50 activity, which was supported by NF-κB-driven RelB synthesis. Finally, brief TNF stimulation elicited late-acting expressions of NF-κB target pro-survival genes in p100-deficient myeloma cells. In sum, our study suggests that the immune-differentiation regulator p100 enforces specificity of TNF signaling and that varied p100 levels may provide for modifying TNF responses in diverse physiological and pathological settings.
Project description:Although cytokine-dependent dynamics of nuclear factor κB (NF-κB) are known to encode information that regulates cell fate decisions, it is unclear whether single-cell responses are switch-like or encode more information about cytokine dose. Here, we measure the dynamic subcellular localization of NF-κB in response to a range of tumor necrosis factor (TNF) stimulation conditions to determine the prevailing mechanism of single-cell dose discrimination. Using an information theory formalism that accounts for signaling dynamics and non-responsive cell subpopulations, we find that the information transmission capacity of single cells exceeds that predicted from a switch-like response. Instead, we observe that NF-κB dynamics within single cells contain sufficient information to encode multiple, TNF-dependent cellular states, and have an activation threshold that varies across the population. By comparing single-cell responses to an internal, experimentally observed reference, we demonstrate that cells can grade responses to TNF across several orders of magnitude in concentration. This suggests that cells contain additional control points to fine-tune their cytokine responses beyond the decision to activate.
Project description:Target-centric drug development strategies prioritize single-target potency in vitro and do not account for connectivity and multi-target effects within a signal transduction network. Here, we present a systems biology approach that combines transcriptomic and structural analyses with live-cell imaging to predict small molecule inhibitors of TNF-induced NF-κB signaling and elucidate the network response. We identify two first-in-class small molecules that inhibit the NF-κB signaling pathway by preventing the maturation of a rate-limiting multiprotein complex necessary for IKK activation. Our findings suggest that a network-centric drug discovery approach is a promising strategy to evaluate the impact of pharmacologic intervention in signaling.
Project description:Aberrant or constitutive activation of nuclear factor kappa B (NF-κB) contributes to various human inflammatory diseases and malignancies via the upregulation of genes involved in cell proliferation, survival, angiogenesis, inflammation, and metastasis. Thus, inhibition of NF-κB signaling has potential for therapeutic applications in cancer and inflammatory diseases. We reported previously that Nei-like DNA glycosylase 2 (NEIL2), a mammalian DNA glycosylase, is involved in the preferential repair of oxidized DNA bases from the transcriptionally active sequences via the transcription-coupled base excision repair pathway. We have further shown that Neil2-null mice are highly sensitive to tumor necrosis factor α (TNFα)- and lipopolysaccharide-induced inflammation. Both TNFα and lipopolysaccharide are potent activators of NF-κB. However, the underlying mechanism of NEIL2's role in the NF-κB-mediated inflammation remains elusive. Here, we have documented a noncanonical function of NEIL2 and demonstrated that the expression of genes, such as Cxcl1, Cxcl2, Cxcl10, Il6, and Tnfα, involved in inflammation and immune cell migration was significantly higher in both mock- and TNFα-treated Neil2-null mice compared with that in the WT mice. NEIL2 blocks NF-κB's binding to target gene promoters by directly interacting with the Rel homology region of RelA and represses proinflammatory gene expression as determined by co-immunoprecipitation, chromatin immunoprecipitation, and electrophoretic mobility-shift assays. Remarkably, intrapulmonary administration of purified NEIL2 via a noninvasive nasal route significantly abrogated binding of NF-κB to cognate DNA, leading to decreased expression of proinflammatory genes and neutrophil recruitment in Neil2-null as well as WT mouse lungs. Our findings thus highlight the potential of NEIL2 as a biologic for inflammation-associated human diseases.
Project description:NF-κB is a major regulator of gene transcription involved in immune, inflammation, apoptosis and stress responses. However, the regulation of NF-κB is not completely understood. Here, we report that the N-Myc and STATs Interactor (NMI), an IFN-inducible protein, is an important negative regulator of NF-κB activity. We found that NMI negatively regulates TNF-α-induced IL-6 and IL-1β production in HeLa cells. Overexpression of NMI inhibits NF-κB transcriptional activity, in contrast, depletion of NMI by shRNA increases NF-κB transcriptional activity. Mechanistically, NMI associates with NF-κB/p65 and inhibits NF-κB/p65 nuclear translocation and thereby negatively regulates NF-κB/p65 transcriptional activity. Taken together, our results demonstrate that NMI modulates the NF-κB signaling pathway by sequestering NF-κB/p65 in the cytoplasm, resulting in reduced IL-6 and IL-1β production after TNF-α stimulation. Treatment with IFNα in the presence of NMI leads to increased apoptosis in tumor cells. These findings reveal a novel mechanism by which NMI regulates NF-κB activity.
Project description:As a malignant tumour of the central nervous system, glioma exhibits high incidence and poor prognosis. Although TNIP1 and the TNF-α/NF-κB axis play key roles in immune diseases and inflammatory responses, their relationship and role in glioma remain unknown. Here, we revealed high levels of TNIP1 and TNF-α/NF-κB in glioma tissue. Glioma cell proliferation was activated with TNF-α treatment and showed extreme sensitivity to the TNF receptor antagonist. Furthermore, loss of TNIP1 disbanded the A20 complex responsible for IκB degradation and NF-κB nucleus translocation, and consequently erased TNFα-induced glioma cell proliferation. Thus, our investigation uncovered a vital function of the TNIP1-mediated TNF-α/NF-κB axis in glioma cell proliferation and provides novel insight into glioma pathology and diagnosis.
Project description:Cell-to-cell heterogeneity is a feature of the tumor necrosis factor (TNF)-stimulated inflammatory response mediated by the transcription factor NF-κB, motivating an exploration of the underlying sources of this noise. Here, we combined single-transcript measurements with computational models to study transcriptional noise at six NF-κB-regulated inflammatory genes. In the basal state, NF-κB-target genes displayed an inverse correlation between mean and noise characteristic of transcriptional bursting. By analyzing transcript distributions with a bursting model, we found that TNF primarily activated transcription by increasing burst size while maintaining burst frequency for gene promoters with relatively high basal histone 3 acetylation (AcH3) that marks open chromatin environments. For promoters with lower basal AcH3 or when AcH3 was decreased with a small molecule drug, the contribution of burst frequency to TNF activation increased. Finally, we used a mathematical model to show that TNF positive feedback amplified gene expression noise resulting from burst size-mediated transcription, leading to a subset of cells with high TNF protein expression. Our results reveal potential sources of noise underlying intercellular heterogeneity in the TNF-mediated inflammatory response.
Project description:Background and aimsTumor necrosis factor (TNF) is a major pathogenic effector and a therapeutic target in inflammatory bowel disease (IBD), yet the basis for TNF-induced intestinal epithelial cell (IEC) death is unknown, because TNF does not kill normal IECs. Here, we investigated how chronic nuclear factor (NF)- κB activation, which occurs in human IBD, promotes TNF-dependent IEC death in mice.MethodsHuman IBD specimens were stained for p65 and cleaved caspase-3. C57BL/6 mice with constitutively active IKKβ in IEC (Ikkβ(EE)IEC), Ripk1D138N/D138N knockin mice, and Ripk3-/- mice were injected with TNF or lipopolysaccharide. Enteroids were also isolated from these mice and challenged with TNF with or without RIPK1 and RIPK3 inhibitors or butylated hydroxyanisole. Ripoptosome-mediated caspase-8 activation was assessed by immunoprecipitation.ResultsNF-κB activation in human IBD correlated with appearance of cleaved caspase-3. Congruently, unlike normal mouse IECs that are TNF-resistant, IECs in Ikkβ(EE)IEC mice and enteroids were susceptible to TNF-dependent apoptosis, which depended on the protein kinase function of RIPK1. Constitutively active IKKβ facilitated ripoptosome formation, a RIPK1 signaling complex that mediates caspase-8 activation by TNF. Butylated hydroxyanisole treatment and RIPK1 inhibitors attenuated TNF-induced and ripoptosome-mediated caspase-8 activation and IEC death in vitro and in vivo.ConclusionsContrary to common expectations, chronic NF-κB activation induced intestinal crypt apoptosis after TNF stimulation, resulting in severe mucosal erosion. RIPK1 kinase inhibitors selectively inhibited TNF destructive properties while preserving its survival and proliferative properties, which do not require RIPK1 kinase activity. RIPK1 kinase inhibition could be a potential treatment for IBD.
Project description:The NF-κB signaling pathway is crucial during development and inflammatory processes. We have previously shown that NF-κB activation induces dedifferentiation of astrocytes into neural progenitor cells (NPCs). Here, we provide evidence that the NF-κB pathway plays also a fundamental role during the differentiation of NPCs into astrocytes. First, we show that the NF-κB pathway is essential to initiate astrocytic differentiation as its early inhibition induces NPC apoptosis and impedes their differentiation. Second, we demonstrate that persistent NF-κB activation affects NPC-derived astrocyte differentiation. Tumor necrosis factor (TNF)-treated NPCs show NF-κB activation, maintain their multipotential and proliferation properties, display persistent expression of immature markers and inhibit astrocyte markers. Third, we analyze the effect of NF-κB activation on the main known astrocytic differentiation pathways, such as NOTCH and JAK-STAT. Our findings suggest that the NF-κB pathway plays a dual fundamental role during NPC differentiation into astrocytes: it promotes astrocyte specification, but its persistent activation impedes their differentiation.