Unknown

Dataset Information

0

Peripheral-central interplay for fatiguing unresisted repetitive movements: a study using muscle ischaemia and M1 neuromodulation.


ABSTRACT: Maximal-rate rhythmic repetitive movements cannot be sustained for very long, even if unresisted. Peripheral and central mechanisms of fatigue, such as the slowing of muscle relaxation and an increase in M1-GABAb inhibition, act alongside the reduction of maximal execution rates. However, maximal muscle force appears unaffected, and it is unknown whether the increased excitability of M1 GABAergic interneurons is an adaptation to the waning of muscle contractility in these movements. Here, we observed increased M1 GABAb inhibition at the end of 30 s of a maximal-rate finger-tapping (FT) task that caused fatigue and muscle slowdown in a sample of 19 healthy participants. The former recovered a few seconds after FT ended, regardless of whether muscle ischaemia was used to keep the muscle slowed down. Therefore, the increased excitability of M1-GABAb circuits does not appear to be mediated by afferent feedback from the muscle. In the same subjects, continuous (inhibitory) and intermittent (excitatory) theta-burst stimulation (TBS) was used to modulate M1 excitability and to understand the underlying central mechanisms within the motor cortex. The effect produced by TBS on M1 excitability did not affect FT performance. We conclude that fatigue during brief, maximal-rate unresisted repetitive movements has supraspinal components, with origins upstream of the motor cortex.

SUBMITTER: Madinabeitia-Mancebo E 

PROVIDER: S-EPMC7822864 | biostudies-literature | 2021 Jan

REPOSITORIES: biostudies-literature

altmetric image

Publications

Peripheral-central interplay for fatiguing unresisted repetitive movements: a study using muscle ischaemia and M1 neuromodulation.

Madinabeitia-Mancebo Elena E   Madrid Antonio A   Oliviero Antonio A   Cudeiro Javier J   Arias Pablo P  

Scientific reports 20210122 1


Maximal-rate rhythmic repetitive movements cannot be sustained for very long, even if unresisted. Peripheral and central mechanisms of fatigue, such as the slowing of muscle relaxation and an increase in M1-GABA<sub>b</sub> inhibition, act alongside the reduction of maximal execution rates. However, maximal muscle force appears unaffected, and it is unknown whether the increased excitability of M1 GABAergic interneurons is an adaptation to the waning of muscle contractility in these movements. H  ...[more]

Similar Datasets

| S-EPMC6008331 | biostudies-literature
| S-EPMC6988371 | biostudies-literature
| S-EPMC8529534 | biostudies-literature
| S-EPMC6971979 | biostudies-literature
| S-EPMC5907702 | biostudies-literature
| S-EPMC3867973 | biostudies-other
| S-EPMC9627360 | biostudies-literature
| S-EPMC7347145 | biostudies-literature
| S-EPMC6007084 | biostudies-literature
| S-EPMC8323909 | biostudies-literature