Unknown

Dataset Information

0

Liquid Chromatography-High-Resolution Mass Spectrometry-Based In Vitro Toxicometabolomics of the Synthetic Cathinones 4-MPD and 4-MEAP in Pooled Human Liver Microsomes.


ABSTRACT: Synthetic cathinones belong to the most often seized new psychoactive substances on an international level. This study investigated the toxicometabolomics, particularly the in vitro metabolism of 2-(methylamino)-1-(4-methylphenyl)-1-pentanone (4-MPD) and 2-(ethylamino)-1-(4-methylphenyl)-1-pentanone (4-MEAP) in pooled human liver microsomes (pHLM) using untargeted metabolomics techniques. Incubations were performed with the substrates in concentrations ranging from 0, 12.5, and 25 µM. Analysis was done by means of high-performance liquid chromatography coupled to high-resolution mass spectrometry (HPLC-HRMS/MS) in full scan only and the obtained data was evaluated using XCMS Online and MetaboAnalyst. Significant features were putatively identified using a separate parallel reaction monitoring method. Statistical analysis was performed using Kruskal-Wallis test for prefiltering significant features and subsequent hierarchical clustering, as well as principal component analysis (PCA). Hierarchical clustering or PCA showed a distinct clustering of all concentrations with most of the features z-scores rising with the concentration of the investigated substances. Identification of significant features left many of them unidentified but revealed metabolites of both 4-MPD and 4-MEAP. Both substances formed carboxylic acids, were hydroxylated at the alkyl chain, and formed metabolites after combined hydroxylation and reduction of the cathinone oxo group. 4-MPD additionally formed a dihydroxy metabolite and a hydroxylamine. 4-MEAP was additionally found reduced at the cathinone oxo group, N-dealkylated, and formed an oxo metabolite. These findings are the first to describe the metabolic pathways of 4-MPD and to extend our knowledge about the metabolism of 4-MEAP. Findings, particularly the MS data of the metabolites, are essential for setting up metabolite-based toxicological (urine) screening procedures.

SUBMITTER: Manier SK 

PROVIDER: S-EPMC7824391 | biostudies-literature | 2020 Dec

REPOSITORIES: biostudies-literature

altmetric image

Publications

Liquid Chromatography-High-Resolution Mass Spectrometry-Based In Vitro Toxicometabolomics of the Synthetic Cathinones 4-MPD and 4-MEAP in Pooled Human Liver Microsomes.

Manier Sascha K SK   Schwermer Florian F   Wagmann Lea L   Eckstein Niels N   Meyer Markus R MR  

Metabolites 20201223 1


Synthetic cathinones belong to the most often seized new psychoactive substances on an international level. This study investigated the toxicometabolomics, particularly the in vitro metabolism of 2-(methylamino)-1-(4-methylphenyl)-1-pentanone (4-MPD) and 2-(ethylamino)-1-(4-methylphenyl)-1-pentanone (4-MEAP) in pooled human liver microsomes (pHLM) using untargeted metabolomics techniques. Incubations were performed with the substrates in concentrations ranging from 0, 12.5, and 25 µM. Analysis w  ...[more]

Similar Datasets

2023-11-28 | MTBLS2218 | MetaboLights
| S-EPMC7835677 | biostudies-literature
| S-EPMC3230881 | biostudies-literature
| S-EPMC7806579 | biostudies-literature
| S-EPMC8510229 | biostudies-literature
| S-EPMC2984235 | biostudies-literature
| S-EPMC2694509 | biostudies-literature
| S-EPMC4426055 | biostudies-literature
| S-EPMC7232229 | biostudies-literature
| S-EPMC6381057 | biostudies-literature