Project description:New SARS-CoV-2 variants emerged in the United Kingdom and South Africa in December 2020 in concomitant with the Brazillian variant in February 2021 (B.1.1.248 lineage) and currently sparking worldwide during the last few months. The new strain 501.V2 in South Africa bears three mutations in the spike receptor-binding domain (RBD); K417 N, E484K, and N501Y, while the Brazilian B.1.1.248 lineage has 12 mutations. In the current study, we simulate the complex ACE2-SARS-CoV-2 spike RBD system in which the RBD is in the wild-type and mutated isoforms. Additionally, the cell-surface Glucose Regulated Protein 78 (CS-GRP78) associated with the ACE2-SARS-CoV-2 spike RBD complex (ACE2-S RBD) is modeled at the presence of these mutant variants of the viral spike. The results showed that E484K and N501Y are critical in viral spike recognition through either ACE2 or CS-GRP78. The mutated variants (the UK, South African, and Brazilian) of the spike RBD tightly bind to GRP78 more than in the case of the wild-type RBD. These results point to the potent role of GRP78 with ACE2 in the attachment of the new variants, which could be a key for the design of inhibitors to block SARS-CoV-2 attachment and entry to the host cell.
Project description:Different SARS-CoV-2 new variants emerged and spread during the past few months, sparking infections and death counts. The new variant B.1.617 (delta variant) sparked in India in the past few months, causing the highest records. The B.1.617 variant of SARS-CoV-2 has the double mutations E484Q and L452R on its spike Receptor Binding Domain (RBD). The first mutation is like the reported South African and the Brazilian variants (501.V2 and B.1.1.248). This mutation lies in the region C480-C488, which we predicted before to be recognized by the host-cell receptor; Glucose Regulated Protein 78 (GRP78). In the current study, we test the binding affinity of the host-cell receptor GRP78 to the delta variant spike RBD using molecular docking and molecular dynamics simulations of up to 100 ns. Additionally, the ACE2-RBD is tested by protein-protein docking. The results reveal equal average binding affinities of the GRP78 against wildtype and delta variant spikes. This supports our previous predictions of the contribution of GRP78 in SARS-CoV-2 spike recognition as an auxiliary route for entry.
Project description:Here we use unbiased abundance proteomics and phosphoproteomics to assess global changes to host and viral proteins in Calu-3 cells at 10 and 24 hours post infection with either the B.1.1.7 UK variant or early-lineage SARS-CoV-2 viruses VIC and IC19.
Project description:Emergence of SARS-CoV-2 variants, including the globally successful B.1.1.7 lineage, suggests viral adaptations to host selective pressures resulting in more efficient transmission. Although much effort has focused on Spike adaptation for viral entry and adaptive immune escape, B.1.1.7 mutations outside Spike likely contribute to enhance transmission. Here we used unbiased abundance proteomics, phosphoproteomics, mRNA sequencing and viral replication assays to show that B.1.1.7 isolates more effectively suppress host innate immune responses in airway epithelial cells. We found that B.1.1.7 isolates have dramatically increased subgenomic RNA and protein levels of Orf9b and Orf6, both known innate immune antagonists. Expression of Orf9b alone suppressed the innate immune response through interaction with TOM70, a mitochondrial protein required for RNA sensing adaptor MAVS activation, and Orf9b binding and activity was regulated via phosphorylation. We conclude that B.1.1.7 has evolved beyond the Spike coding region to more effectively antagonise host innate immune responses through upregulation of specific subgenomic RNA synthesis and increased protein expression of key innate immune antagonists. We propose that more effective innate immune antagonism increases the likelihood of successful B.1.1.7 transmission, and may increase in vivo replication and duration of infection.
Project description:The present wellbeing worry to the whole world is the outbreak of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), also called COVID-19. This global health crisis first appeared in Wuhan, China around December 2019 and due to its extremely contagious nature it had spread to almost 187 countries. Still now no effective method of treatment or vaccine is developed for controlling the disease. Therefore, the sole obliging strategy is to take precautionary measures by repurposing drugs from the pre-existing library of therapeutically potent molecules. In this situation of pandemic this repurposing technique may save the labour-intensive and tiresome process of new drug development. Orientin is a natural flavonoid with several beneficial effects. This phytochemical can be isolated from different plants like tulsi or holy basil, black bamboo, passion flowers etc. It's antiviral, anti-inflammation, vasodilatation, cardioprotective, radioprotective, neuroprotective, anticarcinogenic and antinociceptive effects are already established. In this research, it is intriguing to find out whether this molecule can interfere the interaction of SARS-CoV-2 spike glycoprotein and their host receptor GRP78. Our in silico docking and molecular dynamics simulation results indicate the binding of Orientin in the overlapping residues of GRP78 binding region of SARS-CoV-2 spike model and SARS-CoV-2 spike model binding region of GRP78 substrate-binding domain. Therefore, the results included in this research work provide a strong possibility of using Orientin as a promising precautionary or therapeutic measure for COVID-19.
Project description:Since early 2021, SARS-CoV-2 variants of concern (VOCs) have been causing epidemic rebounds in many countries. Their properties are well characterized at the epidemiological level but the potential underlying within-host determinants remain poorly understood. We analyze a longitudinal cohort of 6944 individuals with 14 304 cycle threshold (Ct) values of reverse-transcription quantitative polymerase chain reaction (RT-qPCR) VOC screening tests performed in the general population and hospitals in France between February 6 and August 21, 2021. To convert Ct values into numbers of virus copies, we performed an additional analysis using droplet digital PCR (ddPCR). We find that the number of viral genome copies reaches a higher peak value and has a slower decay rate in infections caused by Alpha variant compared to that caused by historical lineages. Following the evidence that viral genome copies in upper respiratory tract swabs are informative on contagiousness, we show that the kinetics of the Alpha variant translate into significantly higher transmission potentials, especially in older populations. Finally, comparing infections caused by the Alpha and Delta variants, we find no significant difference in the peak viral copy number. These results highlight that some of the differences between variants may be detected in virus load variations.
Project description:Since the beginning of the of SARS-CoV-2 (Covid-19) pandemic, variants of concern (VOC) have emerged taxing health systems worldwide. In October 2020, a new variant of SARS-CoV-2 (B.1.617+/Delta variant) emerged in India, triggering a deadly wave of Covid-19. Epidemiological data strongly suggests that B.1.617+ is more transmissible and previous reports have revealed that B.1.617+ has numerous mutations compared to wild type (WT), including several changes in the spike protein (SP). The main goal of this study was to use In Silico (computer simulation) techniques to examine mutations in the SP, specifically L452R and E484Q (part of the receptor binding domain (RBD) for human angiotensin-converting enzyme 2 (hACE2)) and P681R (upstream of the Furin cleavage motif), for effects in modulating the transmissibility of the B.1.617+ variant. Using computational models, the binding free energy (BFE) and H-bond lengths were calculated for SP-hACE2 and SP-Furin complexes. Comparison of the SP-hACE2 complex in the WT and B.1.617+ revealed both complexes have identical receptor-binding modes but the total BFE of B.1.617+ binding was more favorable for complex formation than WT, suggesting L452R and E484Q have a moderate impact on binding affinity. In contrast, the SP-Furin complex of B.1.617+ substantially lowered the BFE and revealed changes in molecular interactions compared to the WT complex, implying stronger complex formation between the variant and Furin. This study provides an insight into mutations that modulate transmissibility of the B.1.617+ variant, specifically the P681R mutation which appears to enhance transmissibility of the B.1.617+ variant by rendering it more receptive to Furin.
Project description:The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the causative agent of the COVID-19 global pandemic, utilizes the host receptor angiotensin-converting enzyme 2 (ACE2) for viral entry. However, other host factors might also play important roles in SARS-CoV-2 infection, providing new directions for antiviral treatments. GRP78 is a stress-inducible chaperone important for entry and infectivity for many viruses. Recent molecular docking analyses revealed putative interaction between GRP78 and the receptor-binding domain (RBD) of the SARS-CoV-2 Spike protein (SARS-2-S). Here we report that GRP78 can form a complex with SARS-2-S and ACE2 on the surface and at the perinuclear region typical of the endoplasmic reticulum in VeroE6-ACE2 cells and that the substrate-binding domain of GRP78 is critical for this interaction. In vitro binding studies further confirmed that GRP78 can directly bind to the RBD of SARS-2-S and ACE2. To investigate the role of GRP78 in this complex, we knocked down GRP78 in VeroE6-ACE2 cells. Loss of GRP78 markedly reduced cell surface ACE2 expression and led to activation of markers of the unfolded protein response. Treatment of lung epithelial cells with a humanized monoclonal antibody (hMAb159) selected for its safe clinical profile in preclinical models depleted cell surface GRP78 and reduced cell surface ACE2 expression, as well as SARS-2-S-driven viral entry and SARS-CoV-2 infection in vitro. Our data suggest that GRP78 is an important host auxiliary factor for SARS-CoV-2 entry and infection and a potential target to combat this novel pathogen and other viruses that utilize GRP78 in combination therapy.