Eco-Friendly and Economic, Adsorptive Removal of Cationic and Anionic Dyes by Bio-Based Karaya Gum-Chitosan Sponge.
Ontology highlight
ABSTRACT: A novel, lightweight (8 mg/cm3), conjugate sponge of karaya gum (Kg) and chitosan (Ch) has been synthesized with very high porosity (~98%) and chemical stability, as a pH-responsive adsorbent material for the removal of anionic and cationic dyes from aqueous solutions. Experimental results showed that Kg-Ch conjugate sponge has good adsorption capacity for anionic dye methyl orange (MO: 32.81 mg/g) and cationic dye methylene blue (MB: 32.62 mg/g). The optimized Kg:Ch composition grants access to the free and pH-dependent ionizable functional groups on the surface of the sponge for the adsorption of dyes. The studies on the adsorption process as a function of pH, adsorbate concentration, adsorbent dose, and contact time indicated that the adsorption capacity of MB was decreased with increasing pH from 5 to 10 and external mass transfer together with intra-particle diffusion. The adsorption isotherm of the anionic dye MO was found to correlate with the Langmuir model (R2 = 0.99) while the adsorption of the cationic MB onto the sponge was better described by the Freundlich model (R2 = 0.99). Kinetic regression results specified that the adsorption kinetics were well represented by the pseudo-second-order model. The H-bonding, as well as electrostatic interaction between the polymers and the adsorption interactions of dyes onto Kg-Ch sponge from aqueous solutions, were investigated using attenuated total reflection-Fourier transform infrared (ATR-FTIR) spectroscopy, and the highly wrinkled porous morphology was visualized in depth by field-emission scanning electron microscopy (FE-SEM) analysis. Moreover, the samples could be reused without loss of contaminant removal capacity over six successive adsorption-desorption cycles. The hierarchical three-dimensional sponge-like structure of Kg has not been reported yet and this novel Kg-Ch sponge functions as a promising candidate for the uninterrupted application of organic pollutant removal from water.
SUBMITTER: K Ramakrishnan R
PROVIDER: S-EPMC7828559 | biostudies-literature | 2021 Jan
REPOSITORIES: biostudies-literature
ACCESS DATA