Project description:Coronavirus disease (COVID-19) is caused by severe acute respiratory syndrome-coronavirus-2 (SARS-CoV-2) which was identified in Wuhan, China in December 2019 and jeopardized human lives. It spreads at an unprecedented rate worldwide, with serious and still-unfolding health conditions and economic ramifications. Based on the clinical investigations, the severity of COVID-19 appears to be highly variable, ranging from mild to severe infections including the death of an infected individual. To add to this, patients with comorbid conditions such as age or concomitant illnesses are significant predictors of the disease's severity and progression. SARS-CoV-2 enters inside the host cells through ACE2 (angiotensin converting enzyme2) receptor expression; therefore, comorbidities associated with higher ACE2 expression may enhance the virus entry and the severity of COVID-19 infection. It has already been recognized that age-related comorbidities such as Parkinson's disease, cancer, diabetes, and cardiovascular diseases may lead to life-threatening illnesses in COVID-19-infected patients. COVID-19 infection results in the excessive release of cytokines, called "cytokine storm", which causes the worsening of comorbid disease conditions. Different mechanisms of COVID-19 infections leading to intensive care unit (ICU) admissions or deaths have been hypothesized. This review provides insights into the relationship between various comorbidities and COVID-19 infection. We further discuss the potential pathophysiological correlation between COVID-19 disease and comorbidities with the medical interventions for comorbid patients. Toward the end, different therapeutic options have been discussed for COVID-19-infected comorbid patients.
Project description:Type 2 diabetes mellitus, obesity, hypertension, and other associated metabolic complications have been demonstrated as a crucial contributor to the enhanced morbidity and mortality of patients with coronavirus disease 2019 (COVID-19). Data on the interplay between metabolic comorbidities and the outcomes in patients with COVID-19 have been emerging and rapidly increasing. This implies a mechanistic link between metabolic diseases and COVID-19 resulting in the exacerbation of the condition. Nonetheless, new evidences are emerging to support insulin-mediated aggressive glucose-lowering treatment as a possible trigger of high mortality rate in diabetic COVID-19 patients, putting the clinician in a confounding and difficult dilemma for the treatment of COVID-19 patients with metabolic comorbidities. Thus, this review discusses the pathophysiological link among severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), angiotensin-converting enzyme 2 (ACE2), metabolic complications, and severe inflammation in COVID-19 development, especially in those with multi-organ injuries. We discuss the influence of several routinely used drugs in COVID-19 patients, including anti-inflammatory and anti-coagulant drugs, antidiabetic drugs, renin-angiotensin-aldosterone system inhibitors. Especially, we provide a balanced overview on the clinical application of glucose-lowering drugs (insulin and metformin), angiotensin-converting-enzyme inhibitors, and angiotensin receptor blockers. Although there is insufficient evidence from clinical or basic research to comprehensively reveal the mechanistic link between adverse outcomes in COVID-19 and metabolic comorbidities, it is hoped that the update in the current review may help to better outline the optimal strategies for clinical management of COVID-19 patients with metabolic comorbidities.
Project description:Background: Italy has one of the world's oldest populations, and suffered one the highest death tolls from Coronavirus disease 2019 (COVID-19) worldwide. Older people with cardiovascular diseases (CVDs), and in particular hypertension, are at higher risk of hospitalization and death for COVID-19. Whether hypertension medications may increase the risk for death in older COVID 19 inpatients at the highest risk for the disease is currently unknown. Methods: Data from 5,625 COVID-19 inpatients were manually extracted from medical charts from 61 hospitals across Italy. From the initial 5,625 patients, 3,179 were included in the study as they were either discharged or deceased at the time of the data analysis. Primary outcome was inpatient death or recovery. Mixed effects logistic regression models were adjusted for sex, age, and number of comorbidities, with a random effect for site. Results: A large proportion of participating inpatients were ≥65 years old (58%), male (68%), non-smokers (93%) with comorbidities (66%). Each additional comorbidity increased the risk of death by 35% [adjOR = 1.35 (1.2, 1.5) p < 0.001]. Use of ACE inhibitors, ARBs, beta-blockers or Ca-antagonists was not associated with significantly increased risk of death. There was a marginal negative association between ARB use and death, and a marginal positive association between diuretic use and death. Conclusions: This Italian nationwide observational study of COVID-19 inpatients, the majority of which ≥65 years old, indicates that there is a linear direct relationship between the number of comorbidities and the risk of death. Among CVDs, hypertension and pre-existing cardiomyopathy were significantly associated with risk of death. The use of hypertension medications reported to be safe in younger cohorts, do not contribute significantly to increased COVID-19 related deaths in an older population that suffered one of the highest death tolls worldwide.
Project description:The coronavirus disease 2019 (COVID-19) pandemic is caused by a newly emerged coronavirus (CoV) called Severe Acute Respiratory Syndrome coronavirus 2 (SARS-CoV-2). COVID-19 patients with cardiovascular disease (CVD) comorbidities have significantly increased morbidity and mortality. The use of angiotensin-converting enzyme (ACE) inhibitors and angiotensin II receptor type 1 blockers (ARBs) improve CVD outcomes; however, there is concern that they may worsen the prognosis of CVD patients that become infected with SARS-CoV-2 because the virus uses the ACE2 receptor to bind to and subsequently infect host cells. Thus, some health care providers and media sources have questioned the continued use of ACE inhibitors and ARBs. In this brief review, we discuss the effect of ACE inhibitor-induced bradykinin on the cardiovascular system, on the renin-angiotensin-aldosterone system (RAAS) regulation in COVID-19 patients, and analyze recent clinical studies regarding patients treated with RAAS inhibitors. We propose that the application of RAAS inhibitors for COVID-19 patients with CVDs may be beneficial rather than harmful.
Project description:COVID-19, the disease caused by SARS-CoV-2 infection, can assume a highly variable disease course, ranging from asymptomatic infection, which constitutes the majority of cases, to severe respiratory failure. This implies a diverse host immune response to SARS-CoV-2. However, the immunological underpinnings underlying these divergent disease courses remain elusive. We therefore set out to longitudinally characterize immune signatures of convalescent COVID-19 patients stratified according to their disease severity. Our unique convalescent COVID-19 cohort consists of 74 patients not confounded by comorbidities. This is the first study of which we are aware that excludes immune abrogations associated with non-SARS-CoV-2 related risk factors of disease severity. Patients were followed up and analyzed longitudinally (2, 4 and 6 weeks after infection) by high-dimensional flow cytometric profiling of peripheral blood mononuclear cells (PBMCs), in-depth serum analytics, and transcriptomics. Immune phenotypes were correlated to disease severity. Convalescence was overall associated with uniform immune signatures, but distinct immune signatures for mildly versus severely affected patients were detectable within a 2-week time window after infection.
Project description:IntroductionCardiovascular comorbidities may predispose to adverse outcomes in hospitalized patients with coronavirus disease 2019 (COVID-19). However, across the USA, the burden of cardiovascular comorbidities varies significantly. Whether clinical outcomes of hospitalized patients with COVID-19 differ between regions has not yet been studied systematically. Here, we report differences in underlying cardiovascular comorbidities and clinical outcomes of patients hospitalized with COVID-19 in Texas and in New York state.MethodsWe established a multicenter retrospective registry including patients hospitalized with COVID-19 between March 15 and July 12, 2020. Demographic and clinical data were manually retrieved from electronic medical records. We focused on the following outcomes: mortality, need for pharmacologic circulatory support, need for mechanical ventilation, and need for hemodialysis. Univariate and multivariate logistic regression analyses were performed.ResultsPatients in the Texas cohort (n = 296) were younger (57 vs. 63 years, p value <0.001), they had a higher BMI (30.3 kg/m2 vs. 28.5 kg/m2, p = 0.015), and they had higher rates of diabetes mellitus (41 vs. 30%; p = 0.014). In contrast, patients in the New York state cohort (n = 218) had higher rates of coronary artery disease (19 vs. 10%, p = 0.005) and atrial fibrillation (11 vs. 5%, p = 0.012). Pharmacologic circulatory support, mechanical ventilation, and hemodialysis were more frequent in the Texas cohort (21 vs. 13%, p = 0.020; 30 vs. 12%, p < 0.001; and 11 vs. 5%, p = 0.009, respectively). In-hospital mortality was similar between the 2 cohorts (16 vs. 18%, p = 0.469). After adjusting for differences in underlying comorbidities, only the use of mechanical ventilation remained significantly higher in the participating Texas hospitals (odds ratios [95% CI]: 3.88 [1.23, 12.24]). Median time to pharmacologic circulatory support was 8 days (interquartile range: 2, 13.8) in the Texas cohort compared to 1 day (0, 3) in the New York state cohort, while median time to in-hospital mortality was 16 days (10, 25.5) and 7 days (4, 14), respectively (both p < 0.001). In-hospital mortality was higher in the late versus the early study phase in the New York state cohort (24 vs. 14%, p = 0.050), while it was similar between the 2 phases in the Texas cohort (16 vs. 15%, p = 0.741).ConclusionsGeographical differences, including practice pattern variations and the impact of disease burden on provision of health care, are important for the evaluation of COVID-19 outcomes. Unadjusted data may cause bias affecting future regulatory policies and proper allocation of resources.
Project description:At the end of December 2019 many cases of severe pulmonary inflammation were reported in Hubei Province, China. Nearly all of the affected individuals had had contact to the wet fish market, which was believed to be the source of the novel infection and was closed on 1 January 2020. Subsequently, the Chinese health authorities confirmed that the pathogen was a previously unknown severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), which belongs to the Coronaviridae family. The disease was then designated as coronavirus disease 2019 (COVID-19) and rapidly spread initially in Asia and later worldwide. In March 2020 the COVID-19 outbreak was declared a global pandemic by the World Health Organization. At the time of manuscript submission, more than 20 million people were affected by COVID-19, with more than 500,000 deaths worldwide. The article gives a general overview on the novel COVID-19 with a specific clinical focus on vascular involvement. The article is essentially based on the currently available evidence and the experiences of the authors.