Project description:BackgroundGovernments around the world have implemented non-pharmaceutical interventions to limit the transmission of COVID-19. While lockdowns and physical distancing have proven effective for reducing COVID-19 transmission, there is still limited understanding of how NPI measures are reflected in indicators of human mobility. Further, there is a lack of understanding about how findings from high-income settings correspond to low and middle-income contexts.MethodsIn this study, we assess the relationship between indicators of human mobility, NPIs, and estimates of R t , a real-time measure of the intensity of COVID-19 transmission. We construct a multilevel generalised linear mixed model, combining local disease surveillance data from subnational districts of Ghana with the timing of NPIs and indicators of human mobility from Google and Vodafone Ghana.FindingsWe observe a relationship between reductions in human mobility and decreases in R t during the early stages of the COVID-19 epidemic in Ghana. We find that the strength of this relationship varies through time, decreasing after the most stringent period of interventions in the early epidemic.InterpretationOur findings demonstrate how the association of NPI and mobility indicators with COVID-19 transmission may vary through time. Further, we demonstrate the utility of combining local disease surveillance data with large scale human mobility data to augment existing surveillance capacity and monitor the impact of NPI policies.
Project description:During the past few decades, technologies such as remote sensing, geographical information systems, and global positioning systems have transformed the way the distribution of human population is studied and modeled in space and time. However, the mapping of populations remains constrained by the logistics of censuses and surveys. Consequently, spatially detailed changes across scales of days, weeks, or months, or even year to year, are difficult to assess and limit the application of human population maps in situations in which timely information is required, such as disasters, conflicts, or epidemics. Mobile phones (MPs) now have an extremely high penetration rate across the globe, and analyzing the spatiotemporal distribution of MP calls geolocated to the tower level may overcome many limitations of census-based approaches, provided that the use of MP data is properly assessed and calibrated. Using datasets of more than 1 billion MP call records from Portugal and France, we show how spatially and temporarily explicit estimations of population densities can be produced at national scales, and how these estimates compare with outputs produced using alternative human population mapping methods. We also demonstrate how maps of human population changes can be produced over multiple timescales while preserving the anonymity of MP users. With similar data being collected every day by MP network providers across the world, the prospect of being able to map contemporary and changing human population distributions over relatively short intervals exists, paving the way for new applications and a near real-time understanding of patterns and processes in human geography.
Project description:Can data from mobile phones be used to observe economic shocks and their consequences at multiple scales? Here we present novel methods to detect mass layoffs, identify individuals affected by them and predict changes in aggregate unemployment rates using call detail records (CDRs) from mobile phones. Using the closure of a large manufacturing plant as a case study, we first describe a structural break model to correctly detect the date of a mass layoff and estimate its size. We then use a Bayesian classification model to identify affected individuals by observing changes in calling behaviour following the plant's closure. For these affected individuals, we observe significant declines in social behaviour and mobility following job loss. Using the features identified at the micro level, we show that the same changes in these calling behaviours, aggregated at the regional level, can improve forecasts of macro unemployment rates. These methods and results highlight promise of new data resources to measure microeconomic behaviour and improve estimates of critical economic indicators.
Project description:BackgroundItaly's severe COVID-19 outbreak was addressed by a lockdown that gradually increased in space, time and intensity. The effectiveness of the lockdown has not been precisely assessed with respect to the intensity of mobility restriction and the time until the outbreak receded.MethodsWe used processed mobile phone tracking data to measure mobility restriction, and related those data to the number of new SARS-CoV-2 positive cases detected on a daily base in the three most affected Italian regions, Lombardy, Veneto and Emilia-Romagna, from February 1 through April 6, 2020, when two subsequent lockdowns with increasing intensity were implemented by the Italian government.FindingsDuring the study period, mobility restriction was inversely related to the daily number of newly diagnosed SARS-CoV-2 positive cases only after the second, more effective lockdown, with a peak in the curve of diagnosed cases of infection occurring 14 to 18 days from lockdown in the three regions and 9 to 25 days in the included provinces. An effective reduction in transmission must have occurred nearly immediately after the tighter lockdown, given the lag time of around 10 days from asymptomatic infection to diagnosis. The period from lockdown to peak was shorter in the areas with the highest prevalence of the infection. This effect was seen within slightly more than one week in the most severely affected areas.InterpretationIt appears that the less rigid lockdown led to an insufficient decrease in mobility to reverse an outbreak such as COVID-19. With a tighter lockdown, mobility decreased enough to bring down transmission promptly below the level needed to sustain the epidemic.FundingNo funding sources have been used for this work.
Project description:Based on mobile phone records for 71 million users and location tracking information for one million users over almost three years, this study examines the labor market impacts of the COVID-19 pandemic in China's Guangdong province, whose GDP is larger than that of all but the top 12 countries in the world. Using a standard difference-in-differences framework, our analysis shows dramatic and protracted effects of the pandemic on the labor market: it increased unemployment by 72% and unemployment benefits claims by 57% even after the full reopening in 2020 relative to their levels in the same period in 2019. The impact was also highly heterogeneous, with women, workers older than 40, and migrants being more affected. Cities that rely more on export or that have a higher share of the hospitality industry in GDP but a lower share of the finance and healthcare industries experienced a more pronounced increase in unemployment. The lingering impact likely reflects the global transmission of the pandemic's effects through the supply chain and trade channels.
Project description:BackgroundDuring the second wave of COVID-19 in August 2020, the Tokyo Metropolitan Government implemented public health and social measures to reduce on-site dining. Assessing the associations between human behavior, infection, and social measures is essential to understand achievable reductions in cases and identify the factors driving changes in social dynamics.ObjectiveThe aim of this study was to investigate the association between nighttime population volumes, the COVID-19 epidemic, and the implementation of public health and social measures in Tokyo.MethodsWe used mobile phone location data to estimate populations between 10 PM and midnight in seven Tokyo metropolitan areas. Mobile phone trajectories were used to distinguish and extract on-site dining from stay-at-work and stay-at-home behaviors. Numbers of new cases and symptom onsets were obtained. Weekly mobility and infection data from March 1 to November 14, 2020, were analyzed using a vector autoregression model.ResultsAn increase in the number of symptom onsets was observed 1 week after the nighttime population volume increased (coefficient=0.60, 95% CI 0.28 to 0.92). The effective reproduction number significantly increased 3 weeks after the nighttime population volume increased (coefficient=1.30, 95% CI 0.72 to 1.89). The nighttime population volume increased significantly following reports of decreasing numbers of confirmed cases (coefficient=-0.44, 95% CI -0.73 to -0.15). Implementation of social measures to restaurants and bars was not significantly associated with nighttime population volume (coefficient=0.004, 95% CI -0.07 to 0.08).ConclusionsThe nighttime population started to increase after decreasing incidence of COVID-19 was announced. Considering time lags between infection and behavior changes, social measures should be planned in advance of the surge of an epidemic, sufficiently informed by mobility data.
Project description:The ongoing coronavirus disease 2019 (COVID-19) pandemic has heightened discussion of the use of mobile phone data in outbreak response. Mobile phone data have been proposed to monitor effectiveness of non-pharmaceutical interventions, to assess potential drivers of spatiotemporal spread, and to support contact tracing efforts. While these data may be an important part of COVID-19 response, their use must be considered alongside a careful understanding of the behaviors and populations they capture. Here, we review the different applications for mobile phone data in guiding and evaluating COVID-19 response, the relevance of these applications for infectious disease transmission and control, and potential sources and implications of selection bias in mobile phone data. We also discuss best practices and potential pitfalls for directly integrating the collection, analysis, and interpretation of these data into public health decision making.
Project description:Poverty is one of the most important determinants of adverse health outcomes globally, a major cause of societal instability and one of the largest causes of lost human potential. Traditional approaches to measuring and targeting poverty rely heavily on census data, which in most low- and middle-income countries (LMICs) are unavailable or out-of-date. Alternate measures are needed to complement and update estimates between censuses. This study demonstrates how public and private data sources that are commonly available for LMICs can be used to provide novel insight into the spatial distribution of poverty. We evaluate the relative value of modelling three traditional poverty measures using aggregate data from mobile operators and widely available geospatial data. Taken together, models combining these data sources provide the best predictive power (highest r2 = 0.78) and lowest error, but generally models employing mobile data only yield comparable results, offering the potential to measure poverty more frequently and at finer granularity. Stratifying models into urban and rural areas highlights the advantage of using mobile data in urban areas and different data in different contexts. The findings indicate the possibility to estimate and continually monitor poverty rates at high spatial resolution in countries with limited capacity to support traditional methods of data collection.
Project description:A better understanding of how the COVID-19 pandemic responds to social distancing efforts is required for the control of future outbreaks and to calibrate partial lock-downs. We present quantitative relationships between key parameters characterizing the COVID-19 epidemiology and social distancing efforts of nine selected European countries. Epidemiological parameters were extracted from the number of daily deaths data, while mitigation efforts are estimated from mobile phone tracking data. The decrease of the basic reproductive number ([Formula: see text]) as well as the duration of the initial exponential expansion phase of the epidemic strongly correlates with the magnitude of mobility reduction. Utilizing these relationships we decipher the relative impact of the timing and the extent of social distancing on the total death burden of the pandemic.
Project description:Human mobility has become a major variable of interest during the COVID-19 pandemic and central to policy decisions all around the world. To measure individual mobility, research relies on a variety of indicators that commonly stem from two main data sources: survey self-reports and behavioral mobility data from mobile phones. However, little is known about how mobility from survey self-reports relates to popular mobility estimates using data from the Global System for Mobile Communications (GSM) and the Global Positioning System (GPS). Spanning March 2020 until April 2021, this study compares self-reported mobility from a panel survey in Austria to aggregated mobility estimates utilizing (1) GSM data and (2) Google's GPS-based Community Mobility Reports. Our analyses show that correlations in mobility changes over time are high, both in general and when comparing subgroups by age, gender, and mobility category. However, while these trends are similar, the size of relative mobility changes over time differs substantially between different mobility estimates. Overall, while our findings suggest that these mobility estimates manage to capture similar latent variables, especially when focusing on changes in mobility over time, researchers should be aware of the specific form of mobility different data sources capture.