Project description:The thematic series 'Beyond English: Accessing the global epidemiological literature' in Emerging Themes in Epidemiology highlights the wealth of epidemiological and public health literature in the major languages of the world, and the bibliographic databases through which they can be searched and accessed. This editorial suggests that all systematic reviews in epidemiology and public health should include literature published in the major languages of the world and that the use of regional and non-English bibliographic databases should become routine.
Project description:The Mediterranean specimens of the genus Microporella collected from shallow water habitats during several surveys and cruises undertaken mostly off the Italian coast are revised. As a result of the disentanglement of the M.ciliata complex and the examination of new material, three new species, M.bicollaris sp. nov., M.ichnusae sp. nov., and M.pachyspina sp. nov., are described from submarine caves or associated with seagrasses and algae. An additional species Microporella sp. A, distinct by its finely reticulate ascopore, is described but left in open nomenclature owing to the limitations of a single infertile fragment. After examination of all available material, based on their identical zooidal morphology, the genus Diporula is regarded as junior synonym of Microporella and the combination Microporellaverrucosa is resurrected as first suggested by Neviani in 1896. Fenestrulinajoannae is also reassigned to Microporella. The availability of a large number of colonies of the above-mentioned and other species already well known from the area (i.e., M.appendiculata, M.ciliata, and M.modesta), allowed the assessment of their high intraspecific variability as well as the observation, for the first time, of some morphological characters including ancestrulae, early astogeny, and kenozooids. Finally, M.modesta, in spite of M.ciliata as defined by the neotype selected by Kukliński & Taylor in 2008, appears to be the commonest species in the basin.
Project description:Enabled by high-throughput sequencing approaches, epithelial cancers across a range of tissue types are seen to harbor gene fusions as integral to their landscape of somatic aberrations. Although many gene fusions are found at high frequency in several rare solid cancers, apart from fusions involving the ETS family of transcription factors which have been seen in approximately 50% of prostate cancers, several other common solid cancers have been shown to harbor recurrent gene fusions at low frequencies. On the other hand, many gene fusions involving oncogenes, such as those encoding ALK, RAF or FGFR kinase families, have been detected across multiple different epithelial carcinomas. Tumor-specific gene fusions can serve as diagnostic biomarkers or help define molecular subtypes of tumors; for example, gene fusions involving oncogenes such as ERG, ETV1, TFE3, NUT, POU5F1, NFIB, PLAG1, and PAX8 are diagnostically useful. Tumors with fusions involving therapeutically targetable genes such as ALK, RET, BRAF, RAF1, FGFR1-4, and NOTCH1-3 have immediate implications for precision medicine across tissue types. Thus, ongoing cancer genomic and transcriptomic analyses for clinical sequencing need to delineate the landscape of gene fusions. Prioritization of potential oncogenic "drivers" from "passenger" fusions, and functional characterization of potentially actionable gene fusions across diverse tissue types, will help translate these findings into clinical applications. Here, we review recent advances in gene fusion discovery and the prospects for medicine.
Project description:IntroductionThree Yersinia species were identified from samples of drinking water from diverse geographic regions of Ireland. Conventional commercial biochemical identification systems classified them as Yersinia enterocolitica. Since this organism is the most common cause of bacterial gastroenteritis in some countries, further investigation was warranted. The aim of the study was to provide a microbial characterisation of three Yersinia species, to determine their pathogenicity, and to review the incidence rate of Yersinia enterocolitica detection in our region.MethodsOrganism identification was performed using conventional commercial diagnostic systems MALDI-TOF, API 20E, API 50CHE, TREK Sensititre GNID and Vitek 2 GN, and whole genome sequencing (WGS) was performed. Historical data for detections was extracted from the lab system for 2008 to 2023.ResultsAll three isolates gave "good" identifications of Yersinia enterocolitica on conventional systems. Further analysis by WGS matched two of the isolates with recently described Yersinia proxima, and the third was a member of the non-pathogenic Yersinia enterocolitica clade 1Aa.DiscussionOur analysis of these three isolates deemed them to be Yersinia species not known currently to be pathogenic, but determining this necessitated the use of next-generation sequencing and advanced bioinformatics. Our work highlights the importance of having this technology available to public laboratories, either locally or in a national reference laboratory. The introduction of molecular technologies for the detection of Yersinia species may increase the rate of detections. Accurate identification of significant pathogens in environmental, public health and clinical microbiology laboratories is critically important for the protection of society.
Project description:UnlabelledChanarin-Dorfman syndrome (CDS) is a very rare autosomal recessive inherited neutral lipid metabolism disorder associated with congenital ichthyosis and multi-system involvement. Observation of lipid vacuoles in neutrophils (Jordan's anomaly) in peripheral blood smears in patients with ichthyosiform erythroderma is diagnostic. Herein we present 2 siblings with CDS that were referred to Dokuz Eylul University School of Medicine Department of Pediatrics due to ichthyosis. They had hepatomegaly, cataract, growth retardation, and sensorineural hearing loss. Some lipid vacuoles in neutrophils were noted in peripheral blood smear evaluation. Genetic analysis showed homozygous N209X mutation in both patients. They were put on a low-fat high-carbohydrate diet supplemented with medium-chain fatty acids. During 6 months of follow-up, no improvement was observed in both patients. In conclusion, although CDS is a rare lipid storage disease, it should always be a consideration in patients with congenital ichthyosis, especially those with extracutaneous symptoms or signs. The diagnosis of CDS is made based on a very simple test-peripheral blood smear.Conflict of interestNone declared.
Project description:ABHD5 protein is widely involved in lipid and energy homeostasis. Mutations in the ABHD5 gene are associated with the onset of Neutral Lipid Storage Disease with Ichthyosis (NLSDI), historically known as Chanarin Dorfman Syndrome (CDS). CDS is a rare autosomal recessive lipid storage disease, characterized by non-bullous congenital ichthyosiform eritrhoderma (NCIE), hepatomegaly and liver steatosis. Myopathy, neurosensory hearing loss, cataracts, nystagmus, strabismus, and mental impairment are considered additional findings. To date, 151 CDS patients have been reported all over the world. Here we described two additional families with patients affected by CDS from Turkey. Our patients were a 42 and 22-years old men, admitted to the Hospital for congenital ichthyosis. Hepatic steatosis and myopathy were also detected in both patients. ABHD5 molecular analysis revealed the presence of N209* mutation. Our data enlarge the cohort of CDS patients and provide a revision of muscle clinical findings for this rare inborn error of neutral lipid metabolism.
Project description:BACKGROUND:Chanarin Dorfman Syndrome (CDS) is a rare autosomal recessive disorder characterized by ichthyosiform non-bullous erythroderma and variable involvement of the liver and the neuromuscular system. In CDS patients, the accumulation of neutral lipids inside cytoplasmic lipid droplets has been demonstrated in different tissues. To date, ninety families with this disease have been described worldwide; most of them are from Mediterranean countries. CASE PRESENTATION:In this report, we describe a consanguineous Turkish family with typical features of CDS. The parents are first cousins and are both diseased. At the age of eight, their child presented CDS with non-bullous congenital ichthyosiform erythroderma, hepatosteatosis, hepatomegaly and ectropion. Electromyographic examination is compatible with myopathy. A five-year-old cousin of the child is also affected by CDS. She was born to non-affected consanguineous parents. Mutation analysis of the ABHD5 gene revealed the previously reported mutation, N209X, which is the most frequent in Turkish patients. Lipid vacuoles, also known as Jordan's anomaly, are detectable in their leucocytes. CONCLUSIONS:To the best of our knowledge, this is the first report of a CDS family in which both parents and their child are affected by CDS. To date, the child does not present a more severe clinical phenotype compared with those of his relatives or other CDS patients of the same age. These findings suggest that high levels of triacylglycerol accumulation, that may be supposed to be present in high amount inside the ooplasm, did not affect embryo development and foetal growth.
Project description:Chanarin-Dorfman syndrome (CDS) is a rare autosomal recessive metabolic disorder caused by mutations in gene encoding the domain-5 of ?/?-hydrolase enzyme (ABHD5). It is known as a natural lipid storage disorder arising from impaired lipid metabolism often characterized by hepatomegaly, myopathy, ataxia, non-bullous ichthyosiform erythroderma, hearing loss, and mental retardation. In the present study, we report two affected 28-month-old monozygotic twin boys as new cases of CDS. Genetic analysis was performed in patients, and the results showed a homozygote deletion in exon 4 of ABHD5. According to the the American College of Medical Genetics and Genomics, this variant is categorized as a pathogenic variant.
Project description:cgi-58 (comparative gene identification-58) is a member of alpha/beta-hydrolase family of proteins. Mutations in CGI-58 are shown to be responsible for a rare genetic disorder known as Chanarin-Dorfman syndrome, characterized by an excessive accumulation of triacylglycerol in several tissues and ichthyosis. We have earlier reported that YLR099c encoding Ict1p in Saccharomyces cerevisiae can acylate lysophosphatidic acid to phosphatidic acid. Here we report that human CGI-58 is closely related to ICT1. To understand the biochemical function of cgi-58, the gene was overexpressed in Escherichia coli, and the purified recombinant protein was found to specifically acylate lysophosphatidic acid in an acyl-CoA-dependent manner. Overexpression of CGI-58 in S. cerevisiae showed an increase in the formation of phosphatidic acid resulting in an overall increase in the total phospholipids. However, the triacylglycerol level was found to be significantly reduced. In addition, the physiological significance of cgi-58 in mice white adipose tissue was studied. We found soluble lysophosphatidic acid acyltransferase activity in mouse white adipose tissue. Immunoblot analysis using anti-Ict1p antibodies followed by mass spectrometry of the immunocross-reactive protein in lipid droplets revealed its identity as cgi-58. These observations suggest the existence of an alternate cytosolic phosphatidic acid biosynthetic pathway in the white adipose tissue. Collectively, these results reveal the role of cgi-58 as an acyltransferase.
Project description:Maternally Inherited Diabetes and Deafness (MIDD) is a rare form of diabetes due to defects in mitochondrial DNA (mtDNA). 3243 A>G is the mutation most frequently associated with this condition, but other mtDNA variants have been linked with a diabetic phenotype suggestive of MIDD. From 1989 to 2009, we clinically diagnosed mitochondrial diabetes in 11 diabetic children. Diagnosis was based on the presence of one or more of the following criteria: 1) maculopathy; 2) hearing impairment; 3) maternal heritability of diabetes/impaired fasting glucose and/or hearing impairment and/or maculopathy in three consecutive generations (or in two generations if 2 or 3 members of a family were affected). We sequenced the mtDNA in the 11 probands, in their mothers and in 80 controls. We identified 33 diabetes-suspected mutations, 1/33 was 3243A>G. Most patients (91%) and their mothers had mutations in complex I and/or IV of the respiratory chain. We measured the activity of these two enzymes and found that they were less active in mutated patients and their mothers than in the healthy control pool. The prevalence of hearing loss (36% vs 75-98%) and macular dystrophy (54% vs 86%) was lower in our mitochondrial diabetic adolescents than reported in adults. Moreover, we found a hitherto unknown association between mitochondrial diabetes and celiac disease. In conclusion, mitochondrial diabetes should be considered a complex syndrome with several phenotypic variants. Moreover, deafness is not an essential component of the disease in children. The whole mtDNA should be screened because the 3243A>G variant is not as frequent in children as in adults. In fact, 91% of our patients were mutated in the complex I and/or IV genes. The enzymatic assay may be a useful tool with which to confirm the pathogenic significance of detected variants.