Ontology highlight
ABSTRACT:
SUBMITTER: Lassau N
PROVIDER: S-EPMC7840774 | biostudies-literature | 2021 Jan
REPOSITORIES: biostudies-literature
Lassau Nathalie N Ammari Samy S Chouzenoux Emilie E Gortais Hugo H Herent Paul P Devilder Matthieu M Soliman Samer S Meyrignac Olivier O Talabard Marie-Pauline MP Lamarque Jean-Philippe JP Dubois Remy R Loiseau Nicolas N Trichelair Paul P Bendjebbar Etienne E Garcia Gabriel G Balleyguier Corinne C Merad Mansouria M Stoclin Annabelle A Jegou Simon S Griscelli Franck F Tetelboum Nicolas N Li Yingping Y Verma Sagar S Terris Matthieu M Dardouri Tasnim T Gupta Kavya K Neacsu Ana A Chemouni Frank F Sefta Meriem M Jehanno Paul P Bousaid Imad I Boursin Yannick Y Planchet Emmanuel E Azoulay Mikael M Dachary Jocelyn J Brulport Fabien F Gonzalez Adrian A Dehaene Olivier O Schiratti Jean-Baptiste JB Schutte Kathryn K Pesquet Jean-Christophe JC Talbot Hugues H Pronier Elodie E Wainrib Gilles G Clozel Thomas T Barlesi Fabrice F Bellin Marie-France MF Blum Michael G B MGB
Nature communications 20210127 1
The SARS-COV-2 pandemic has put pressure on intensive care units, so that identifying predictors of disease severity is a priority. We collect 58 clinical and biological variables, and chest CT scan data, from 1003 coronavirus-infected patients from two French hospitals. We train a deep learning model based on CT scans to predict severity. We then construct the multimodal AI-severity score that includes 5 clinical and biological variables (age, sex, oxygenation, urea, platelet) in addition to th ...[more]